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The Story Behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 

Syncfusion, Inc. 

taying on the cutting edge 
As many of you may know, Syncfusion is a provider of software components for the 

Microsoft platform. This puts us in the exciting but challenging position of always 

being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about 

every other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 
In reality, this translates into a lot of book orders, blog searches, and Twitter scans. 

While more information is becoming available on the Internet and more and more books are 

being published, even on topics that are relatively new, one aspect that continues to inhibit us is 

the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 

relevant blog posts and other articles. Just as everyone else who has a job to do and customers 

to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books that 

would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 

be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 

wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 
Each author was carefully chosen from a pool of talented experts who shared our vision. The 

book you now hold in your hands, and the others available in this series, are a result of the 

authors’ tireless work. You will find original content that is guaranteed to get you up and running 

in about the time it takes to drink a few cups of coffee.  

S 
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Free forever  
Syncfusion will be working to produce books on several topics. The books will always be free. 

Any updates we publish will also be free.  

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 

frameworks than anyone else on the market. Developer education greatly helps us market and 

sell against competing vendors who promise to “enable AJAX support with one click,” or “turn 

the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 

succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 

of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

 

Please follow us on Twitter and “Like” us on Face-book to help us spread the  

word about the Succinctly series! 

             

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion
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Chapter 1 Getting Started 

Keras is an open-source, neural-network library written in the Python language. Keras requires 
a backend engine and can use TensorFlow, CNTK (Microsoft Cognitive Toolkit), Theano, or 
MXNet. The motivation for Keras is that, although it's possible to create deep neural systems 
using TensorFlow directly (or CNTK, Theano, MXNet), because TensorFlow works at a 
relatively low level of abstraction, coding TensorFlow directly is quite challenging. Keras adds a 
relatively easy-to-use layer of abstraction over TensorFlow. 

Keras, which means "horn" in Greek, was first released in March 2015. This e-book is based on 
Keras version 2.1.5, which was released in March 2018. Because Keras is in active 
development, by the time you read this e-book, the latest version will certainly be different. 
However, any changes to Keras will likely be relatively minor and consist mainly of additional 
functionality rather than major architecture changes. In other words, the code presented here 
should work with any Keras 2.x version with few, if any, changes needed.    

Keras runs on Windows, Linux, and Mac systems. This e-book focuses on Keras on Windows, 
but because Keras programs run in a shell, Keras on Linux or Mac systems is almost exactly 
the same. 

The screenshot in Figure 1-1 shows a simplified Keras session on Windows. Notice that the 
program is just an ordinary Python script, wheat_nn.py, that references Keras as a Python 
package, and Keras programs run in an ordinary shell. 

 

 Figure 1-1: Example Keras Session 

This e-book assumes you have intermediate or better programming skill with a C-family 
language, but doesn't assume you know anything about Keras. Enough chit-chat already—let's 
get started.
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Installing Keras and Anaconda 

Every programmer I know, including me, learns how to program in a new language or 
framework by getting an example program up and running, and then experimenting with the 
example by making changes. So if you want to learn Keras, the first step is to install it. 

Keras installation may be a bit different from other software installation you've done before. You 
don't install Keras directly. Instead, you install Keras as an add-on package for Python. Briefly, 
you first install a Python distribution (Anaconda), which contains the base Python language 
interpreter plus several additional packages that are required by Keras, in particular, the NumPy 
package. Next, you install the TensorFlow package, and then the Keras package. 

It is possible to install Python, NumPy, and the other dependencies separately. But instead, I 
strongly recommend that you install the Anaconda distribution of Python, which has everything 
you need to successfully install and run Keras. Before beginning the installation process, you 
must carefully determine compatible versions of Keras, TensorFlow, and Anaconda. Most of the 
installation failures I've seen are due to incompatible versions. 

The first step is to determine which version of Keras you want to use. In general, you'll want to 
install the most recent stable version of Keras. However, this e-book is based on Keras version 
1.7.0 rather than the most recent version, along with Anaconda3 4.1.1 (which contains Python 
3.5.2) and TensorFlow 2.1.5. I'm confident the code in this e-book will work with newer versions 
of Keras with few, if any, modifications needed. 

Before installing Anaconda/Python, you should check your machine to determine if you already 
have an existing Python installation. The simplest scenario is when your machine doesn't have 
an existing Python installed, and you can proceed. If, however, you already have one or more 
versions of Python installed, you should either uninstall them all (if feasible) or note their 
installation locations, if uninstalling them is not feasible. With multiple Python instances 
installed, you may run into some Python versioning issues at some point. 

To install Anacoinda3 4.1.1, you can either do an internet search for "archive Anaconda install" 
or go directly to this location. See Figure 1-2. 

On that page, you'll see many different Anaconda distributions. Be careful here; even though 
I've installed and uninstalled Anaconda for Keras/TensorFlow dozens of times, I've selected the 
incorrect version of Anaconda several times. 

The Anaconda distribution contains over 500 Python packages that are compatible with each 
other. Some packages, such as NumPy and SciPy, are absolutely essential. Some packages 
are specific to a field of study, such as BioPython for molecular biology, and some are not 
essential, but very useful, such as MatPlotLib for creating graphs and charts. You can view the 
complete list of packages included with Anaconda here. 

www.dbooks.org
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Figure 1-2: Find Correct Anaconda Archived Install Link 

Because I'm using a 64-bit Windows machine, and I want Python 3 with Anaconda version 
4.1.1, I will click the link Anaconda3-4.1.1-Windows-x86_64.exe. This will launch a self-
extracting installation program. You can select the Run option. 

To recap, at this point you've determined which versions of Keras (1.7.0) and TensorFlow 
(2.1.5) you want to use, and then determined which version of Anaconda to use (Anaconda3 
4.1.1 for a 64-bit Windows machine in this example), and are now beginning the Anaconda 
installation process. 

 

Figure 1-3: Anaconda Installation Welcome 

A few seconds after you click Run, the Anaconda installation Welcome window will appear, as 
shown in Figure 1-3. Click Next. 

  



 13 

You will see the Anaconda License Agreement window, as shown in Figure 1-4. Click I Agree. 

 

Figure 1-4: Anaconda License Agreement 

You will see the Select Installation Type window, as shown in Figure 1-5. I strongly suggest you 
keep the default Just Me (recommended) option. This will reduce the likelihood of Python 
versioning collisions if there are multiple user accounts on your machine. Click Next. 

 

Figure 1-5: Anaconda Installation Type 
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Next, you'll see the Choose Install Location information. You should accept the default location 
(C:\Users\<user>\AppData\Local\Continuum\Anaconda3 on Windows) if possible, because 
some Python packages may assume this location. Click Next. 

 

Figure 1-6: Default Anaconda Python Installation Location 

Next, you will see the Advanced Installation Options window. You should accept both default 
options. The first adds Anaconda to your System PATH variable. The second option makes 
Anaconda your default Python version. If you have an existing Python installation, this will 
usually override the existing instance, and you may want to install a Python version selector 
program. Click Install. 

 

Figure 1-7: Installation PATH and Default Python Information 
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Installing Anaconda takes about 10 to 15 minutes. There will be no options for you to consider, 
so you don't need to attend to the installation. However, you may want to observe the progress 
bar and see which packages are installed, such as NumPy, shown in Figure 1-8. 

 

Figure 1-8: Anaconda Installation Progress 

When the installation completes successfully, you'll see an Installation Complete window. Click 
Next, as shown in Figure 1-9. 

 

Figure 1-9: Successful Anaconda Installation Window 
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You will see a final window, with an option to view marketing information from Continuum, the 
company that maintains the Anaconda distribution. In Figure 1-10, I unchecked that option, and 
clicked Finish. To summarize, the Anaconda install is a self-extracting executable with a 
wizard-like process. You can accept all the default options. 

 

Figure 1-10: Final Anaconda Installation Window 

After the Anaconda installation is complete, you may want to take a look at the installation file 
and directory structure, as shown in Figure 1-11. Notice there are directories named Lib, 
Library, and libs. Just below the files shown in Figure 1-11 is the python.exe main execution 
engine. 

 

Figure 1-11: The Anaconda Installation Location 

  



 17 

Before installing the TensorFlow and Keras add-on packages, you should verify that your 
Anaconda Python distribution is working. Open a command shell and enter python --version 

(with two hyphens). Python should respond as shown in Figure 1-12.  

 

Figure 1-12: Verifying the Anaconda Python Installation 

You can test the Python interpreter by issuing the command python. This will launch the 

interpreter, and you'll see the >>> prompt. Enter a print('hello') statement. You can exit the 

interpreter by typing the exit() command. 

Installing TensorFlow and Keras 

The next step is to install TensorFlow, and there are several ways to do it. I recommend using 
the PyPi (Python Package Index) repository. 

 

Figure 1-13: Downloading the TensorFlow .whl File 
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Do an Internet search for "install TensorFlow 1.7.0" or go directly to this page  and click the 
Download files link. You'll go to a page that lists .whl files for different types of systems. In my 
case, because I'm using Python 3.5 and a Windows machine, I clicked on the link tensorflow-
1.7.0-cp35-cp35m-win_amd64.whl (the cp35 indicates Python 3.5). See Figure 1-13. 

You'll be asked if you want to open or save the .whl file. Click the Save as option. You can save 
the wheel file in any convenient location. I saved at C:\KerasSuccinctly\Wheels. Now, open a 
command shell and navigate to the directory where you saved the TensorFlow .whl file, and 
enter the following command: 

C:\KerasSuccinctly\Wheels> pip install tensorflow-1.7.0-cp35-cp35m-
win_amd64.whl 

The pip utility installs Python packages using .whl files. Installation takes less than a minute, 

and then you'll see this message: "Successfully installed tensorflow-1.7.0". 

The process for installing Keras is very much the same. Do an Internet search for "install Keras 
2.1.5", or go directly to this webpage and click the link labeled Download files. See Figure 1-
14.  

 

Figure 1-14: Downloading the Keras .whl File    

On the next page, click the Keras-2.1.5-py2.py3-none-any.whl link, and you'll be prompted to 
open or save. Click Save as and save the .whl file in a convenient location, for example, 
C:\KerasSuccinctly\Wheels. Launch a command shell, navigate to the directory where you 
saved the Keras .whl file, and enter the following command: 

C:\KerasSuccinctly\Wheels> pip install Keras-2.1.5-py2.py3-none-any.whl  

Installation is very quick, and you'll see a "Successfully installed Keras-2.1.5" message. You're 
now ready to write Keras programs. 

https://pypi.org/project/tensorflow/1.7.0/
https://pypi.org/project/Keras/2.1.5/
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Editing and running Keras programs 

Because a Keras program is just a specialized Python program, you can use any Python editing 
environment. If you are relatively new to Python, selecting a Python editor or IDE (integrated 
development environment) can be a confusing task because there are dozens of editors and 
Python IDEs to choose from. 

I often use plain old Notepad, or sometimes the slightly more powerful Notepad++. Neither of 
these give you built-in debugging functionality, so debugging means you must insert print() 

statements to inspect the values of variables and objects. And there's no integrated run 

command, so you run programs from a shell.  

Code Listing 1-1: Checking the Keras and TensorFlow Versions 

# test_keras.py 
import sys 
import keras as K 
import tensorflow as tf 
 
py_ver = sys.version 
k_ver = K.__version__ 
tf_ver = tf.__version__ 
 
print("Using Python version " + str(py_ver)) 
print("Using Keras version " + str(k_ver)) 
print("Using TensorFlow version " + str(tf_ver)) 

Launch the Notepad text editor (or any other editor you're familiar with), and copy-paste the 
code in Code Listing 1-1. Save the file as test_keras.py in any convenient directory. Open a 
command shell, navigate to the directory that holds your Python file, and execute by entering 
python test_keras.py, as shown in Figure 1-15. 

 

Figure 1-15: Using Notepad and a Command Shell 
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Many of my colleagues use Visual Studio Code (VS Code), a free, open-source, cross-platform, 
multi-language IDE. Installing VS Code is quick and easy, and adding Python support is just a 
matter of a couple of clicks. See this webpage.   

 

Figure 1-16: Using Visual Studio Code 

Figure 1-16 shows an example using VS Code. There are many advantages of using VS Code, 
including IntelliSense auto-complete, pretty formatting, and integrated debugging. However, 
unlike Notepad, VS Code does have a non-trivial learning curve you'll have to deal with. See 
this tutorial for help. 

Another option for editing and running Keras programs is the heavyweight Visual Studio (VS) 
IDE. The default configuration of VS does not support editing Python programs, but you can 
install the Python Tools for Visual Studio add-in. With the add-in installed, you get full Python 
language support, as shown in Figures 1-17 and 1-18.  

 

Figure 1-17: Creating a Python Project using the Visual Studio IDE 

https://code.visualstudio.com/download
https://code.visualstudio.com/docs/python/python-tutorial
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One advantage of using Visual Studio is that you get support for all kinds of additional 
functionality, such as data connectors to SQL Server databases and Azure data sources. The 
main disadvantage of Visual Studio is that it has a steep learning curve. 

 

Figure 1-18: Running a Python Program from the Visual Studio IDE 

If you are familiar with any Python editor or development environment, my recommendation is to 
continue using that system. If you are relatively new to programming, my recommendation is to 
start with simple Notepad, because it has essentially no learning curve. If you are an 
experienced developer but new to Python, my recommendation is to try VS Code. 

 

Figure 1-19: Using the Notepad++ Editor 

www.dbooks.org

https://www.dbooks.org/


 22 

Uninstalling Keras 

Anaconda, Keras, and TensorFlow all have quick, easy, and reliable uninstall procedures. To 
uninstall Keras, launch a command shell and issue the command pip uninstall keras. The 

Keras package will be removed from your Python system, as shown in (the slightly edited-for-
size) Figure 1-20. To uninstall TensorFlow, issue pip uninstall tensorflow.  

 

Figure 1-20: Uninstalling Keras 

To uninstall Python on Windows, use the Programs and Features section of the Control 
Panel: 

 

Figure 1-21: Uninstalling Anaconda Python 

If you become a regular user of Keras, eventually you'll want to upgrade your version. Although 
the pip utility supports an upgrade command, I recommend just deleting your current version, 
then installing the new version. 
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Chapter 2 Multiclass Classification 

The goal of multiclass classification is to make a prediction where the variable to predict can 
take on one of a set of three or more discrete values. For example, you might want to predict 
the political party affiliation of a person (democrat, republican, or other) based on their age, sex, 
annual income, and so on. 

 

Figure 2-1: Multiclass Classification using Keras 

The screenshot in Figure 2-1 shows a demonstration of multiclass classification. The demo 
program begins by loading 120 training data items and 30 test data items into memory. Each 
item represents an iris flower where the four predictor variables are sepal length, sepal width, 
petal length, and petal width (a sepal is a leaf-like structure). The variable to predict is species. 

There are three possible species: setosa, versicolor, and virginica. 

www.dbooks.org
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Behind the scenes, the demo program creates a 4-(5-6)-3 neural network, that is, one with four 
input values (one for each predictor variable), two hidden layers with five and six nodes 
respectively, and three output nodes (one for each possible species). The demo program trains 
the neural network model using 10 epochs.  

After training completes, the trained model achieves a prediction accuracy of 100.00% on the 
test data (30 of 30 correct). The demo concludes by making a prediction for a new, previously 
unseen iris flower with predictor values (6.1, 3.1, 5.1, 1.1). The predicted probabilities are 
(0.0172, 0.7159, 0.2669), and because the second value is largest, the prediction is 
versicolor. 

Understanding the data 

Fischer's Iris dataset is one of the most well-known benchmark datasets in statistics and 
machine learning. There are a total of 150 items. The raw data looks like: 

5.1, 3.5, 1.4, 0.2, setosa 
7.0, 3.2, 4.7, 1.4, versicolor 
6.3, 3.3, 6.0, 2.5, virginica 

The raw data was prepared by one-hot encoding the class labels, but the feature values were 
not normalized as is usually done: 

5.1, 3.5, 1.4, 0.2, 1, 0, 0 
7.0, 3.2, 4.7, 1.4, 0, 1, 0 
6.3, 3.3, 6.0, 2.5, 0, 0, 1 

After encoding, the full dataset was split into a 120-item set for training, and a 30-item test set to 
be used after training for model evaluation. Because the data has four dimensions, it's not 
possible to easily visualize it in a two-dimensional graph, but you can get a rough idea of the 
data from the partial graph in Figure 2-2.    
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Figure 2-2: Iris Data 

As the graph shows, the Iris Dataset is almost too simple. The class setosa can be easily 

distinguished from versicolor and virginica. Furthermore, the classes versicolor and 

virginica are nearly linearly separable. However, the Iris Dataset serves well as a simple 

example. 

By the way, there are actually at least two different versions of Fisher's Iris Data that are in 
common use. The original data was collected in 1935, and then published by Fisher in 1936. 
However, at some point in time, a couple of the original values for setosa items were incorrectly 

copied, and years later made their way onto the Internet. This isn't serious, since the datasets 
are now used just for a teaching example, rather than for serious research. 

The Iris program 

The complete program that generated the output shown in Figure 2-1 is shown in Code Listing 
2-1. The program begins with comments for the program file name and the versions of Python, 
TensorFlow and Keras used, and then imports the NumPy, Keras, TensorFlow, and OS 
packages: 

# iris_dnn.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 

In a non-demo scenario, you'd want to include additional details in the comments. Because 
Keras and TensorFlow are under rapid development, you should always document which 
versions are being used. Version incompatibilities can be a significant problem when working 
with Keras and other open-source software. 

Code Listing 2-1: Iris Multiclass Classification Program 

# iris_dnn.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
 
# 
===========================================================================
======= 
 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 
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def main(): 
  # 0. get started 
  print("\nIris dataset using Keras/TensorFlow ") 
  np.random.seed(4) 
  tf.set_random_seed(13) 
 
  # 1. load data 
  print("Loading Iris data into memory \n") 
  train_file = ".\\Data\\iris_train.txt" 
  test_file = ".\\Data\\iris_test.txt" 
 
  train_x = np.loadtxt(train_file, usecols=[0,1,2,3], 
   delimiter=",",  skiprows=0, dtype=np.float32) 
  train_y = np.loadtxt(train_file, usecols=[4,5,6], 
    delimiter=",", skiprows=0, dtype=np.float32) 
 
  test_x = np.loadtxt(test_file, usecols=range(0,4), 
   delimiter=",",  skiprows=0, dtype=np.float32) 
  test_y = np.loadtxt(test_file, usecols=range(4,7), 
    delimiter=",", skiprows=0, dtype=np.float32) 
 
  # 2. define model 
  init = K.initializers.glorot_uniform(seed=1) 
  simple_adam = K.optimizers.Adam() 
  model = K.models.Sequential() 
  model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, 
    activation='relu')) 
  model.add(K.layers.Dense(units=6, kernel_initializer=init, 
    activation='relu')) 
  model.add(K.layers.Dense(units=3, kernel_initializer=init, 
    activation='softmax')) 
  model.compile(loss='categorical_crossentropy',  
    optimizer=simple_adam, metrics=['accuracy']) 
 
  # 3. train model 
  b_size = 1 
  max_epochs = 10 
  print("Starting training ") 
  h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, 
    shuffle=True, verbose=1)  
  print("Training finished \n") 
 
  # 4. evaluate model 
  eval = model.evaluate(test_x, test_y, verbose=0) 
  print("Evaluation on test data: loss = %0.6f  accuracy = %0.2f%% \n" \ 
    % (eval[0], eval[1]*100) ) 
 
  # 5. save model 
  print("Saving model to disk \n") 
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  mp = ".\\Models\\iris_model.h5" 
  model.save(mp) 
 
  # 6. use model 
  np.set_printoptions(precision=4) 
  unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32) 
  predicted = model.predict(unknown) 
  print("Using model to predict species for features: ") 
  print(unknown) 
  print("\nPredicted species is: ") 
  print(predicted) 
 
# 
===========================================================================
======= 
 
if __name__=="__main__": 
  main() 

The program imports the entire Keras package and assigns an alias K. An alternative approach 

is to import only the modules you need, for example: 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

Even though Keras uses TensorFlow as its backend engine, you don't need to explicitly import 
TensorFlow, except to set its random seed. The OS package is imported only so that an 
annoying TensorFlow startup warning message will be suppressed. 

The program structure consists of a single main function, with no helper functions. The program 
begins with: 

def main(): 
  # 0. get started 
  print("\nIris dataset using Keras/TensorFlow ") 
  np.random.seed(4) 
  tf.set_random_seed(13) 
 
  # 1. load data 
  print("Loading Iris data into memory \n") 
  train_file = ".\\Data\\iris_train.txt" 
  test_file = ".\\Data\\iris_test.txt" 
. . .  

In most situations, you want to make your results reproducible. The Keras library makes 
extensive use of the NumPy global random number generator, so it's good practice to set the 
seed value. The value used in the program, 4, is arbitrary. Similarly, because Keras uses 

TensorFlow, you'll usually want to set its seed, too. However, program results typically aren't 
completely reproducible due to order of numeric rounding of parallelized tasks. 
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I indent with two spaces rather than the normal four spaces because of page-width limitations. 
All normal error-checking has been removed to keep the main ideas as clear as possible. 

The program assumes that the training and test data files are located in a subdirectory named 
Data. The program doesn't have any information about the structure of the data files. I strongly 

recommend that you include program comments such as: 

# data is comma-delimited and looks like: 
# 5.1, 3.5, 1.4, 0.2, 1, 0, 0 
# first four values are non-normalized features 
# last three values are one-hot labels for 
# setosa, versicolor, virginica 
# 120 training items, 30 test items 

This kind of information is easy to remember when you're writing your program, but difficult to 
remember a couple of weeks later. 

The training and test data are read into memory with these statements: 

  train_x = np.loadtxt(train_file, usecols=[0,1,2,3], 
   delimiter=",",  skiprows=0, dtype=np.float32) 
  train_y = np.loadtxt(train_file, usecols=[4,5,6], 
    delimiter=",", skiprows=0, dtype=np.float32) 
 
  test_x = np.loadtxt(test_file, usecols=range(0,4), 
   delimiter=",",  skiprows=0, dtype=np.float32) 
  test_y = np.loadtxt(test_file, usecols=range(4,7), 
    delimiter=",", skiprows=0, dtype=np.float32) 

In general, Keras needs feature data and label data stored in separate NumPy array-of-array 
style matrices. There are many ways to read data into memory, but the loadtxt() function is 

versatile enough to meet most problem scenarios. The NumPy genfromtxt() function is very 

similar but gives you a few additional options, such as dealing with missing data. The 
loadtxt() function has a large number of parameters, but in most cases, you only need 

usecols, delimiter, and dtype.   

Notice that usecols can accept a list such as [0,1,2,3] or a Python range such as 

range(0,4). If you use the range() function, be careful to remember that the first parameter is 

inclusive, but the second parameter is exclusive. 

In addition to the comma character, common values for the delimiter parameter are "\t" (tab) 

and " " (single space) The default parameter value is None, which means any whitespace. 

The default dtype parameter value is numpy.float, which is an alias for Python float, and is 

the exact same as numpy.float64. But the default data type for almost all Keras functions is 

numpy.float32, so the program specifies this type. The idea is that for the majority of machine-

learning problems, the advantage in precision gained by using 64-bit values is not worth the 
memory and performance penalty. 
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An alternative approach to using static, separate training and test files is to use just a single file 
containing all data, read all data into memory, and then programmatically generate training and 
test matrices in memory. This alternative technique allows you to perform k-fold cross validation, 
a technique which used to be common, but which is now rarely used with deep learning and 
very large datasets. 

Instead of using a NumPy function such as loadtxt() to read data into memory, a different 

approach is to use the Pandas (originally "panel data," now "Python Data Analysis Library") 
library, which has many advanced data manipulation features. However, Pandas has a 
significant learning curve. 

Defining the neural network model 

The program defines a 4-(5-6)-3 deep neural network using this code: 

  # 2. define model 
  init = K.initializers.glorot_uniform(seed=1) 
  simple_adam = K.optimizers.adam() 
  model = K.models.Sequential() 
  model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, 
    activation='relu')) 
  model.add(K.layers.Dense(units=6, kernel_initializer=init, 
    activation='relu')) 
  model.add(K.layers.Dense(units=3, kernel_initializer=init, 
    activation='softmax')) 

  model.compile(loss='categorical_crossentropy',  
    optimizer=simple_adam, metrics=['accuracy']) 

Deep neural networks are often very sensitive to the initial values of the weights and biases, so 
Keras has several different initialization functions. The demo uses glorot_uniform(), which 

assigns small, random values based on the fan-in and fan-out of the network layer in which it's 
used. The seed parameter is used so that program results will be reproducible. Table 2-1 lists a 

few of the common initialization functions in Keras. 

Table 2-1: Common keras.initializers Functions 

Function Description 

Zeros() All np.float32 0.0 values 

Constant(value=0) All a single specified np.float32 value 

RandomNormal(mean=0.0, 
stddev=0.05, seed=None) 

Gaussian, bell-shaped distribution 

RandomUniform(minval=-0.05, 
maxval=0.05, seed=None) 

Random, evenly distributed between 
minval and maxval 
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Function Description 

glorot_normal(seed=None) Truncated Normal with stddev = sqrt(2 
/ (fan_in + fan_out)) 

glorot_uniform(seed=None) Uniform random with limits sqrt(6 / 
(fan_in + fan_out)) 

The program prepares an Adam() optimizer object to be used by the fit() training function. 

Adam (adaptive moment estimation) is one of many training algorithms supported by Keras, and 
it's a good first choice when creating a prediction model. The program uses all Adam() default 

parameters, but they could have been specified explicitly as a form of documentation: 

simple_adam = K.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, 
  epsilon=None, decay=0.0, amsgrad=False) # default parameter values 

The program builds up the neural network architecture using the Sequential() method. The 

input layer is implicit, so the model begins with the first hidden layer: 

  model = K.models.Sequential() 
  model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, 
    activation='relu')) 

The Dense() function is a standard, fully-connected layer. The units parameter specifies the 

number of hidden processing nodes in the layer, and because this is the first layer listed, you 
must specify how many input values there are using the input_dim parameter. 

The hidden layer is configured to use relu activation (rectified linear unit). As you might expect, 

Keras supports many activation functions. For a Dense() hidden layer, relu is often a good first 

attempt. Other common activation functions are listed in Table 2-2. Keras also contains 
advanced, adaptive activation functions such LeakyReLU() in the keras.layers module. 

Table 2-2: Common Dense Layer Activation Functions 

Function Descripton 

relu(x, alpha=0.0, max_value=None) if x < 0 , f(x) = 0, else f(x) = x 

tanh(x) hyperbolic tangent 

sigmoid(x) f(x) = 1.0 / (1.0 + exp(-x)) 

linear(x) f(x) = x 

softmax(x, axis=-1) coerces vector x values to sum to 1.0 so 
they can be loosely interpreted as 
probabilities 
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An alternative to supplying a string value like 'relu' to the activation parameter of the Dense() 

function, which uses default parameter values in the case of relu() and softmax(), is to use 

an Activation layer. For example: 

  model = K.models.Sequential() 
  model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init)) 
  model.add(K.layers.Activation('relu')) 

One of the challenges of working with Keras is that as it has evolved over time, many different 
techniques have been created, which can be confusing. Sometimes older examples use one 
approach, such as a separate Activation layer, and newer examples use a different approach, 

such as the string activation parameter in Dense(). 

After setting up the implied input layer and the explicit first hidden layer, the rest of the 
architecture is specified like so: 

  model.add(K.layers.Dense(units=6, kernel_initializer=init, 
    activation='relu')) 
  model.add(K.layers.Dense(units=3, kernel_initializer=init, 
    activation='softmax')) 

Because neither of these are the first layer, you don't have to specify the number of input 
values. If you wanted to, you could do so like this: 

  model.add(K.layers.Dense(units=6, input_dim=5, kernel_initializer=init, 
    activation='relu')) 
  model.add(K.layers.Dense(units=3, input_dim=6, kernel_initializer=init, 
   activation='softmax'))  

Instead of using Sequential() and the add() method, you can construct a neural network by 

creating separate layers and then passing them to the Model() constructor like this: 

  init = K.initializers.glorot_uniform(seed=1) 
  X = K.layers.Input(shape=(4,)) 
  net = K.layers.Dense(units=5, kernel_initializer=init, 
    activation='relu')(X) 
  net = K.layers.Dense(units=6, kernel_initializer=init, 
    activation='relu')(net) 
  net = K.layers.Dense(units=3, kernel_initializer=init, 
    activation='softmax')(net) 
  model = K.models.Model(X, net) 

The two approaches create the exact same neural network, but are quite different in terms of 
syntax. For multiclass classification problems, the choice is purely one of personal preference.  

After a neural network model has been defined, it must be compiled before it can be trained: 

  model.compile(loss='categorical_crossentropy', 
    optimizer=simple_adam, metrics=['accuracy'])  
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You can loosely think of the compilation process as translating Keras code into TensorFlow 
code (or CNTK code or Theano code). You must pass values to the optimizer and loss 

parameters so that the fit() method will know how to train the model. For multiclass 

classification, the categorical_crossentropy loss function is usually the best choice, but you 

can use the mean_squared_error function if needed (for example, to replicate the work of other 

people). 

The metrics parameter is optional. The program passes a Python list containing just 

'accuracy' to indicate that classification accuracy (percentage correct predictions) should be 

computed during training.  

Training and evaluating the model 

After training data has been read into memory and the neural network has been created, the 
program trains the model using these statements: 

  # 3. train model 
  b_size = 1 
  max_epochs = 10 
  print("Starting training ") 
  h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, 
    shuffle=True, verbose=1)  
  print("Training finished \n") 

The batch size is set to 1, which is called online training. This means that the neural network 

weights and biases are updated for every training item. Alternatives are to set the batch size to 
the number of items in the training set (120), which is sometimes called full-batch training, or to 
set the batch size to an intermediate value such as 16, which is called mini-batch training. 

The max_epochs variable controls how many iterations will be used for training. The shuffle 

parameter in the fit() function indicates that the training items should be processed in random 

order. The default value is True, so the parameter could have been omitted. The verbose 

parameter controls how much information to display during training: 0 means display no 

information, 1 means display full information, and 2 means display a medium amount of 

information. 

The fit() function returns a dictionary object that has the recorded training history. The demo 

program captures this information into object h, but doesn't make use of it. If you wanted to see 

the loss values, you could do so like this: 

print(h.history['loss'])   

After training, the demo program evaluates the model on the test data: 

  # 4. evaluate model 
  eval = model.evaluate(test_x, test_y, verbose=0) 
  print("Evaluation on test data: loss = %0.6f  accuracy = %0.2f%% \n" \ 
    % (eval[0], eval[1]*100) ) 



 33 

The evaluate() function returns a list of values. The first value at index [0] is the always value 

of the required loss function specified in the compile() function. Other values in the list are any 

optional metrics from the compile() function. In this example, 'accuracy' was passed, so 

the value at index [1] holds the classification accuracy. The program multiples by 100 to 

convert accuracy from a proportion (like 0.9123) to a percentage (like 91.23%). 

Saving and using the model 

In most situations you'll want to save a trained model, especially if the training took hours or 
even longer. The demo program saves the trained model like so: 

  # 5. save model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\iris_model.h5" 
  model.save(mp) 

Somewhat unusually, compared to other neural network libraries, Keras saves a trained model 
using the hierarchical data format (HDF) version 5. It is a binary format, so saved models can't 
be inspected with a text editor. In addition to saving an entire model, you can save just the 
model weights and biases, which is sometimes useful. You can also save the just model 
architecture but not the weights. 

A saved Keras model can be loaded from a different program like this: 

print("Loading a saved model") 
mp = ".\\Models\\iris_model.h5" 
model = K.models.load_model(mp) 

The whole point of creating and training a model is so that it can be used to make predictions for 
new, previously unseen data: 

   # 6. use model 
  np.set_printoptions(precision=4) 
  unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32) 
  predicted = model.predict(unknown) 
  print("Using model to predict species for features: ") 
  print(unknown) 
  print("\nPredicted species is: ") 
  print(predicted) 

The predict() method accepts input and computes output based on the values of the model's 

current weights and biases. Notice that variable unknown is an array-of-arrays (indicated by the 

double square brackets) rather than a simple vector.  

The output is raw in the sense that it's a set of probabilities. It's up to you to interpret the 
meaning. You can do so programmatically along the lines of: 
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  labels = ["setosa", "versicolor", "virginica"] 
  idx = np.argmax(predicted) 
  species = labels[idx] 
  print(species) 

The argmax(v) function returns the index of the largest value in vector or list v. It's a useful 

function for many classification problems. 

Summary and resources 

To perform multiclass classification, you encode the target labels using one-hot (also called 1-
of-N) encoding. The activation function on the output layer should be set to softmax so the 

node values sum to 1.0, and can be loosely interpreted as probabilities. 

The loss function in most cases should be set to categorical_crossentropy, but you can use 

mean_squared_error if you wish. In general, you should pass accuracy to the optional 

metrics list of the compile() function. 

Free parameters for multiclass classification include the number of hidden layers and the 
number of nodes in each hidden layer, the optimizer algorithm (but Adam is often a good 

choice), batch size, and the maximum number of training epochs to use. 

The training and test data used by the demo program can be found here. 

The demo program uses the glorot_uniform() function for initialization. See additional 

information and alternatives here. 

The demo program uses the relu() function for hidden-layer activation. See additional 

information and alternatives here. 

  

https://github.com/jdmccaffrey/keras-succinctly/tree/master/Iris
https://keras.io/initializers/
https://keras.io/activations/
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Chapter 3 Regression 

The goal of a regression problem is to make a prediction where the variable to predict is a single 
numeric value. For example, you might want to predict the annual income of a person based on 
their age, sex, political-party affiliation, and so on. 

 

Figure 3-1: Regression using Keras 

The screenshot in Figure 3-1 shows a demonstration of regression using a deep neural network. 
The demo program begins by loading 506 data items into memory. Each item represents the 
median house price in one of 506 towns near Boston. After loading, the demo programmatically 
splits the dataset into a training set and a test set. 

Behind the scenes, the demo program creates a 13-(10-10)-1 deep neural network. Then, the 
network is trained using 500 epochs. After training, the regression model has 68.56 percent 
accuracy on the training data, and 70.59 percent accuracy on the held-out test data. 

The demo program concludes by making a prediction for a hypothetical, previously unseen town 
near Boston. The predicted median house price is $8,049.89 (the data comes from the 1970s 
when house prices were much lower than they are today).  
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Understanding the data 

The Boston Housing dataset is a fairly well-known benchmark for regression problems. There 
are a total of 506 items. The raw data looks like this: 

0.00632  18  2.31  0  0.538  6.575  65.2  4.09    1  296  15.3  396.9  4.98  24 
0.02731   0  7.07  0  0.469  6.421  78.9  4.9671  2  242  17.8  396.9  9.14  21.6 

Each line has 14 fields. The first 13 are the predictor values. The last value is the median home 
price in the town, divided by 1,000, so the first town shown has a median house price of 
$24,000.  

The first three predictors, [0] to [2], are per capita crime rate, proportion of land zoned for large 
residential lots, and proportion of non-retail acres. The predictor [3] is a Boolean if the town 
borders the Charles River (0 = no, 1 = yes). 

Briefly, the remaining predictors are: [4] = air pollution metric, [5] = average number rooms per 
house, [6] = proportion of old houses, [7] = weighted distance to Boston, [8] = index of 
accessibility to highways, [9] = tax rate, [10] = pupil-teacher ratio, [11] = measure of proportion 
of Black residents, and [12] = percentage lower socio-economic status residents. 

Because the data has 14 dimensions, it's not possible to easily visualize it. However, you can 
get a rough idea of the data by looking at the partial graph in Figure 3-2. 

 

Figure 3-2: Partial Boston Housing Data 

The graph plots just median price as a function of predictor [6], proportion of old houses, for the 
first 100 of the 506 data items. You can see from the graph that it's not possible to create an 
accurate prediction model based on just the old-houses proportion variable.  
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The raw data was preprocessed. The Boolean predictor [3] was converted from (0, 1) dummy 
encoding to (-1, +1) encoding. The 12 other (numeric) predictor variables were min-max 
normalized, resulting in all values being between 0.0 and 1.0. The target median house price 
variable, which was already divided by 1,000 was further divided by 10 so that all values are 
between 1.0 and 5.0. The resulting data looks like: 

0.000000  0.180000  0.067815  -1  . . . 2.400000 
0.000236  0.000000  0.242302  -1  . . . 2.160000 

Somewhat fortunately, other than predictor [3], all the predictor variables are numeric, so there's 
no need for 1-of-(N-1) or possibly one-hot encoding of categorical variables. 

The Boston program 

The complete program that generated the output shown in Figure 3-1 is shown in Code Listing 
3-1. The program begins with comments the program file name and versions of Python, 
TensorFlow, and Keras used, and then imports the NumPy, Keras, TensorFlow, and OS 
packages: 

# boston_reg.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 

In a non-demo scenario, you'd want to include additional details in the comments. Because 
Keras and TensorFlow are under rapid development, you should always document which 
versions are being used. Version incompatibilities can be a significant problem when working 
with Keras and other open-source software. 

Code Listing 3-1: Boston Housing Regression Program 

# boston_reg.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
 
# 
===========================================================================
======= 
 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 
 
class MyLogger(K.callbacks.Callback): 
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  def __init__(self, n, data_x, data_y, pct_close): 
    self.n = n  
    self.data_x = data_x 
    self.data_y = data_y 
    self.pct_close = pct_close 
 
  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      curr_loss = logs.get('loss') 
      total_acc = my_accuracy(self.model, self.data_x, 
        self.data_y, self.pct_close) 
      print("epoch = %4d  curr batch loss (mse) = %0.6f  overall acc = 
%0.2f%%" % \ 
        (epoch, curr_loss, total_acc * 100)) 
 
def my_accuracy(model, data_x, data_y, pct_close): 
  num_correct = 0; num_wrong = 0 
  n = len(data_x) 
  for i in range(n): 
    predicted = model.predict(np.array([data_x[i]], dtype=np.float32))  # 
[[x]] 
    actual = data_y[i] 
    if np.abs(predicted[0][0] - actual) < np.abs(pct_close * actual): 
      num_correct += 1 
    else: 
      num_wrong += 1 
  return (num_correct * 1.0) / (num_correct + num_wrong) 
 
# 
===========================================================================
======= 
 
def main(): 
  # 0. get started 
  print("\nBoston Houses dataset regression example ") 
  np.random.seed(2) 
  tf.set_random_seed(3) 
 
  kv = K.__version__ 
  print("Using Keras: ", kv, "\n") 
 
  # 1. load data 
  print("Loading Boston data into memory ") 
  data_file = ".\\Data\\boston_mm_tab.txt" 
  all_data = np.loadtxt(data_file, delimiter="\t", skiprows=0, 
dtype=np.float32) 
 
  N = len(all_data) 
  indices = np.arange(N) 
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  np.random.shuffle(indices) 
  n_train = int(0.80 * N) 
 
  print("Splitting data into training and test sets \n") 
  data_x = all_data[indices,:-1]  
  data_y = all_data[indices,-1] 
  train_x = data_x[0:n_train,:] 
  train_y = data_y[0:n_train] 
  test_x = data_x[n_train:N,:] 
  test_y = data_y[n_train:N] 
 
  # 2. define model 
  init = K.initializers.RandomUniform(seed=1) 
  simple_sgd = K.optimizers.SGD(lr=0.010) 
  model = K.models.Sequential() 
  model.add(K.layers.Dense(units=10, input_dim=13, kernel_initializer=init, 
    activation='tanh'))  # hidden layer 
  model.add(K.layers.Dense(units=10, kernel_initializer=init, 
    activation='tanh'))  # hidden layer 
  model.add(K.layers.Dense(units=1, kernel_initializer=init, 
    activation=None)) 
 
  model.compile(loss='mean_squared_error', optimizer=simple_sgd, 
metrics=['mse']) 
 
  # 3. train model 
  batch_size= 8 
  max_epochs = 500 
  my_logger = MyLogger(int(max_epochs/5), train_x, train_y, 0.15) 
  print("Starting training ") 
  h = model.fit(train_x, train_y, batch_size=batch_size, epochs=max_epochs, 
    verbose=0, callbacks=[my_logger]) 
  print("Training finished \n") 
 
  # 4. evaluate model 
  acc = my_accuracy(model, train_x, train_y, 0.15) 
  print("Overall accuracy (wthin 15%%) on training data = %0.4f" % acc) 
 
  acc = my_accuracy(model, test_x, test_y, 0.15)  
  print("Overall accuracy on test data  = %0.4f \n" % acc) 
 
  eval = model.evaluate(train_x, train_y, verbose=0) 
  print("Overall loss (mse) on training data = %0.6f" % eval[0]) 
 
  eval = model.evaluate(test_x, test_y, verbose=0) 
  print("Overall loss (mse) on test data = %0.6f" % eval[0]) 
 
  # 5. save model 
  print("\nSaving Boston model to disk \n") 
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  mp = ".\\Models\\boston_model.h5" 
  model.save(mp) 
 
  # 6. use model 
  np.set_printoptions(precision=1) 
  unknown = np.full(shape=(1,13), fill_value=0.6, dtype=np.float32) 
  unknown[0][3] = -1.0  # binary feature 
  predicted = model.predict(unknown) 
  print("Using model to predict median house price for features: ") 
  print(unknown) 
  print("\nPredicted price is: ") 
  print("$%0.2f" % (predicted * 10000)) 
 
# 
===========================================================================
======= 
 
if __name__=="__main__": 
  main() 

The program imports the entire Keras package and assigns an alias K. An alternative approach 

is to import just the modules you need, for example: 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

Even though Keras uses TensorFlow as its backend engine, you don't need to explicitly import 
TensorFlow, except in order to set its random seed. The OS package is imported only so that an 
annoying TensorFlow startup warning message will be suppressed. 

The program structure consists of a single main function, plus the helper class MyLogger, and 

the helper function my_accuracy(). These are needed because in a regression problem, 

there's no inherent definition of accuracy—you must define how close a predicted value must be 
to a correct training value in order to be considered a correct prediction. 

The MyLogger class initializer is defined: 

class MyLogger(K.callbacks.Callback): 
  def __init__(self, n, data_x, data_y, pct_close): 
    self.n = n 
    self.data_x = data_x 
    self.data_y = data_y 
    self.pct_close = pct_close 
. . . 

The class inherits from the Keras Callback base class. As you'll see shortly, a Callback object 

is something that can be invoked automatically during training via the fit() function. The 

MyLogger initializer function (similar to a constructor in other programming languages) accepts 

a pct_close parameter, which specifies how close a predicted value must be to a target value. 
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The MyLogger class functionality is defined like so: 

  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      curr_loss = logs.get('loss')  
      total_acc = my_accuracy(self.model, self.data_x, 
        self.data_y, self.pct_close) 
      print("epoch = %4d  curr batch loss (mse) = %0.6f  overall acc = 
%0.2f%%" % \ 
        (epoch, curr_loss, total_acc * 100)) 

Note that Python uses the backslash character for line continuation. The on_epoch_end() 

method is inherited from the base Callback class. It will trigger automatically after each training 

epoch finishes. The program restricts output to every n epochs using the modulus (%) operator. 

The method fetches the built-in loss metric value from the logs dictionary collection. Then, the 

method calls the program-defined my_accuracy() function to compute the prediction accuracy 

over the entire training data (not, just the current batch). The logger object displays the accuracy 
metric as a percentage (such as 85.12%) rather than a proportion (such as 0.8512), but this is a 
subjective matter of personal preference. 

The program-defined accuracy function is: 

def my_accuracy(model, data_x, data_y, pct_close): 
  num_correct = 0; num_wrong = 0 
  n = len(data_x) 

 
  for i in range(n): 
    predicted = model.predict(np.array([data_x[i]], dtype=np.float32))  # 
[[x]] 
    actual = data_y[i] 
    if np.abs(predicted[0][0] - actual) < np.abs(pct_close * actual): 
      num_correct += 1 
    else: 
      num_wrong += 1 
  return (num_correct * 1.0) / (num_correct + num_wrong) 

There are a couple of tricky syntax issues. The predict() method expects a matrix, but 

data_x[i] is a vector, so the values are passed as [data_x[i]]. When using Keras, you 

shouldn't underestimate the frequency of running into problems with the shape of various 
objects. 

The predicted house median price return value from predict() is a single value stored in a 

NumPy array-of-arrays matrix, so the scalar value itself is at [0][0]. 

Reading and splitting the data 

The demo program begins execution like so: 
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def main(): 
  # 0. get started 
  print("\nBoston Houses dataset regression example ") 
  np.random.seed(2) 
  tf.set_random_seed(3) 
  kv = K.__version 
  print("Using Keras: ", kv, "\n") 
. . . 

Setting the NumPy and TensorFlow global random seeds is an attempt to get reproducible 
results. The seed values, 2 and 3, are arbitrary. The demo prints the Keras version just to show 

how it's done. The entire 506-item normalized data is read into memory using these statements: 

  # 1. load data 
  print("Loading Boston data into memory ") 
  data_file = ".\\Data\\boston_mm_tab.txt" 
  all_data = np.loadtxt(data_file, delimiter="\t", skiprows=0, 
dtype=np.float32) 

The NumPy loadtxt() function is simple and versatile. The strategy used by the demo 

program is to read all data into memory, and then split it into training and test matrices. The 
primary alternative is to split the dataset before loading into memory. Reading then splitting has 
the advantage of keeping your data file(s) simpler at the expense of slightly more program code. 

The demo prepares the data split: 

  N = len(all_data) 
  indices = np.arange(N) 
  np.random.shuffle(indices) 
  n_train = int(0.80 * N) 

The len() function, applied to an n-dimensional NumPy array, returns the number of items in 

the first dimension. In this case, that is the number of rows in the training data. An alternative is 
to use the size() function and explicitly specify the dimension: 

N = np.size(all_data, 0)  # 0 = rows, 1 = cols 

The call to arange(N) ("array-range," not "arrange") returns an array of integers from 0 to N-1 

inclusive. The shuffle() functions rearranges the values in its argument by reference, so you 

don't need to assign a return value. The number of training items is computed as 80 percent of 
the total number, in this case 0.80 * 506 = 404 items, leaving 102 items for test purposes. 

Splitting the data is done by these statements: 

  data_x = all_data[indices,:-1] 
  data_y = all_data[indices,-1] 
  train_x = data_x[0:n_train,:] 
  train_y = data_y[0:n_train] 
  test_x = data_x[n_train:N,:] 
  test_y = data_y[n_train:N] 
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The indexing [indices,:-1] means all rows in scrambled order, and all columns except the 

last column. Indexing [indices,-1] means all rows in scrambled order, and just the last 

column. Indexing [0:n_train,:] means rows 0 to n_train-1 inclusive, and all columns. 

Indexing [0:n_train] is an alternative syntax that means rows 0 to n_train-1 inclusive, and 

all columns. Indexing [n_train:N,:] means rows n_train to N-1 inclusive. Indexing 

[n_train,N] is an alternative syntax that means rows n_train to N-1 inclusive. Whew! 

Personally, I don't find NumPy-array indexing anywhere near intuitive, and when I work with 
indexing, I always have to look up the syntax rules in online documentation. 

Defining the model 

The deep neural regression model is defined by this code: 

  init = K.initializers.RandomUniform(seed=1) 
  simple_sgd = K.optimizers.SGD(lr=0.010) 
  model = K.models.Sequential() 
  model.add(K.layers.Dense(units=10, input_dim=13, kernel_initializer=init, 
    activation='tanh')) 
  model.add(K.layers.Dense(units=10, kernel_initializer=init, 
    activation='tanh')) 
  model.add(K.layers.Dense(units=1, kernel_initializer=init,  
    activation=None)) 
  model.compile(loss='mean_squared_error', optimizer=simple_sgd, 
metrics=['mse']) 

The network model has 13 input nodes, two hidden layers, each with 10 nodes, and one output 
node. Therefore, the network has (13 * 10) + 10 + (10 * 10) + 10 + (10 * 1) + 1 = 261 weights 
and biases. You can get this information programmatically by calling the model.summary() 

function without any parameters. 

The demo program prepares the model by setting up a weight initializer using the 
RandomUniform() function with a seed value of 1, plus default parameter values of minval =  
-0.05 and maxval = +0.05. The demo uses a stochastic gradient descent optimizer. The 

default learning rate is 0.01, so the demo code could have omitted the explicit assignment. 
Other default parameter values are momentum = 0.0 (no momentum), decay = 0.0 (no 

decay), and nesterov = False (no Nesterov momentum used). 

The model is defined using the Sequential() layers syntax. There is no explicit input layer, so 

the first Dense() layer added is the first hidden layer. The activation on both hidden layers is 

tanh, which is often used for regression networks, but relu sometimes works better. Both 

hidden layers have 10 nodes. It's common practice, but not required, to specify the same 
number of nodes for all hidden layers in a regression network. 

The output layer has a single node. Because the output node represents the median house 
price, it can take any value, so no activation is applied. An activation value of None is the 

default, so the demo code could have omitted the activation parameter. 
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After the model definition statements, the model is compiled. A loss parameter value is 

required, and the demo passes mean_squared_error, which is the most common choice for a 

regression network. A rare alternative scenario is when the output node value has been coerced 
to the range (0.0, 1.0), typically via sigmoid activation on the output node, and the training target 
values are also in (0.0, 1.0), typically via min-max normalization on the target, dependent 
variable values. 

The metrics parameter is optional; when used, it accepts a list of quantities to compute during 

training. The demo passes 'mse', which is a shortcut alias for mean_squared_error. Unlike a 

classification problem where you usually pass accuracy, in regression there's no inherent 

definition of accuracy. 

Instead of using the Sequential() syntax, you can define layers individually and chain them 

together: 

  init = K.initializers.RandomUniform(seed=1) 
  simple_sgd = K.optimizers.SGD(lr=0.010) 
  X = K.layers.Input(shape=(13,)) 
  net = K.layers.Dense(units=10, kernel_initializer=init, 
    activation='tanh')(X) 
  net = K.layers.Dense(units=10, kernel_initializer=init, 
    activation='tanh')(net) 
  net = K.layers.Dense(units=1, kernel_initializer=init, 
    activation=None)(net) 
  model = K.models.Model(X, net) 
  model.compile(loss='mean_squared_error', optimizer=simple_sgd, 
metrics=['mse']) 

The two approaches create identical models and yield identical results, so the choice is purely 
one of personal coding style preference. 

Training and evaluating the model 

The demo program prepares training with these statements: 

  # 3. train model 
  batch_size= 8 
  max_epochs = 500 
  my_logger = MyLogger(int(max_epochs/5), train_x, train_y, 0.15) 

The batch size and the maximum number of epochs to train are hyperparameters, and good 
value must be determined by trial and error. The my_logger object is instantiated to fire once 

every max_epochs / 5 = 500 / 5 = 100 epochs. Because of how the on_epoch_end() method is 

defined, this means that the current mean squared error loss and the prediction accuracy on all 
404 training items, will be displayed every 100 epochs. Recall that when accuracy is computed, 
a prediction is correct if it is plus or minus 15 percent of the correct target value. 

Training is performed by calling the fit() function: 
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  print("Starting training ") 
  h = model.fit(train_x, train_y, batch_size=batch_size, epochs=max_epochs, 
    verbose=0, callbacks=[my_logger]) 
  print("Training finished \n") 

Notice that the demo uses the same argument value name, batch_size, as the parameter 

name. Some people use this style consistently, while others go out of their way to avoid using 
the same name. 

Setting verbose = 0 suppresses all built-in progress messages during training, but because 

the callbacks list has the my_logger object, the demo will display the custom messages. 

The fit() function returns an object that holds a History object containing metrics computed 

during training. The demo doesn't use the return value, but could have done so like this: 

  loss_list = h.history['loss']  # loss of last batch every epoch 
  print(loss_list) 

After training, the demo program computes and prints the model's prediction accuracy: 

  # 4. evaluate model 
  acc = my_accuracy(model, train_x, train_y, 0.15) 
  print("Overall accuracy (within 15%%) on training data = %0.4f" % acc) 
  acc = my_accuracy(model, test_x, test_y, 0.15) 
  print("Overall accuracy on test data  = %0.4f \n" % acc) 

In general, the prediction accuracy on the test data should be roughly similar to the prediction 
accuracy on the training data. If accuracy on the test data is significantly less than accuracy on 
the training data, there's a good chance that you trained your model too aggressively and your 
model is overfitted. 

In addition to displaying prediction accuracy, the demo program displays the loss values: 

  eval = model.evaluate(train_x, train_y, verbose=0) 
  print("Overall loss (mse) on training data = %0.6f" % eval[0]) 
  eval = model.evaluate(test_x, test_y, verbose=0) 
  print("Overall loss (mse) on test data = %0.6f" % eval[0]) 

The evaluate() function returns a list of values. The first value at index [0] is the always the 

value of the (required) loss function specified in the compile() function, mean squared error in 

this case. Other values in the list are any optional metrics from the compile() function. For 

this example, and for regression in general, optional metrics usually are not specified. 

Metrics include loss functions such as mean_squared_error and 

categorical_crossentropy, as well as five additional accuracy metrics for classification 

problems, shown in Table 3-1.  

Table 3-1: Accuracy Metrics Functions 
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Function Description 

binary_accuracy(y_true, y_pred) For binary classification 

categorical_accuracy(y_true, y_pred) For multiclass classification 

sparse_categorical_accuracy(y_true, 
y_pred) 

Rarely used (see documentation) 

top_k_categorical_accuracy(y_true, 
y_pred, k=5) 

Rarely used (see documentation) 

sparse_top_k_categorical_accuracy(y_true, 
y_pred, k=5) 

Rarely used (see documentation)) 

It's also possible to write custom, program-defined metric functions. Note that the shortcut alias 
acc can be used for either binary classification or multiclass classification. 

Saving and using the model 

The demo program saves the trained model like so: 

  # 5. save model 
  print("\nSaving Boston model to disk \n") 
  mp = ".\\Models\\boston_model.h5" 
  model.save(mp) 

Keras saves models using the hierarchical data format (HDF) version 5. It's a binary format, so 
saved models can't be inspected with a text editor. In addition to saving an entire model, you 
can save just the model weights and biases, which is sometimes useful. You can also save the 
model architecture, but not the weights. Keras does not support saving models with the ONNX 
(open neural network exchange) format. 

A saved Keras model can be loaded like so: 

print("Loading a saved model") 
mp = ".\\Models\\boston_model.h5" 
model = K.models.load_model(mp) 

The demo program uses the trained model to predict the median house price for a hypothetical, 
previously unseen town near Boston: 
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  # 6. use model 
  np.set_printoptions(precision=1) 
  unknown = np.full(shape=(1,13), fill_value=0.6, dtype=np.float32) 
  unknown[0][3] = -1.0  # binary feature 
  predicted = model.predict(unknown) 
  print("Using model to predict median house price for features: ") 
  print(unknown) 
  print("\nPredicted price is: ") 
  print("$%0.2f" % (predicted * 10000)) 

The code sets up 13 predictor variables. Recall that 12 of the 13 predictors were min-max 
normalized to values between 0.0 and 1.0, so when predicting, you must use min-max 
normalized values too. Predictor variable [3] is the Boolean next-to-river value, so it must be 
encoded as either -1 or +1. 

The demo program uses 0.6 for all min-max normalized predictor values. In a non-demo 
scenario, you'd have to actually perform normalization on raw input data, which means you 
need the minimum an maximum values for each normalized variable in the training data. This 
creates a tightly coupled connection between training data and trained model. The point is that 
you must retain your training data. 

Summary and resources 

When performing neural regression, you usually want to normalize your data. The number of 
hidden layers, and the number of nodes in each hidden layer, are hyperparameters that must be 
determined by trial and error. The two most common hidden layer activation functions are tanh 

and relu. The output layer should have a single node, and its activation function should be set 

to None, except in unusual scenarios.  

Because there is no inherent definition of accuracy for a regression problem, you must define 
your own accuracy function. In order to monitor prediction accuracy during training, you can 
implement a custom callback class and pass it as an argument to the fit() function. Common 

training optimizer functions for regression problems are stochastic gradient descent and Adam, 
but other optimizers often perform better.  

The 506-item normalized data used by the demo program can be found here. 

The demo program uses a custom accuracy metric (for regression). You can find information 
about built-in accuracy metrics (for classification) here. 
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Chapter 4 Binary Classification 

The goal of binary classification is to make a prediction where the variable to predict can take on 
one of just two discrete values. For example, you might want to predict the sex (male or female) 
of a person based on their age, political party affiliation, annual income, and so on. Binary 
classification works somewhat differently than multiclass classification, where the variable to 
predict can be one of three or more possible discrete values. 

 

Figure 4-1: Binary Classification using Keras 

The screenshot in Figure 4-1 shows a demonstration of binary classification. The demo program 
begins by loading 178 training data items, 59 validation data items, and 60 test data items into 
memory. Each item represents a patient who has heart disease (1) or not (0). There are 13 

predictor variables in the raw data. After normalization and encoding, there are 18 input 
variables. 

Behind the scenes, the demo program creates an 18-(10-10)-1 deep neural network, that is, one 
with 18 input values (one for each predictor value), two hidden layers both with 10 nodes, and a 
single output node. The demo program trains the neural network model using 2,000 epochs. 
During training, the loss and accuracy values for both the training data and the validation data 
are displayed.  

After training completes, the trained model achieves a prediction accuracy of 83.33 percent on 
the test data (50 of 60 correct, 10 incorrect). The demo concludes by making a prediction for a 
new, hypothetical, previously unseen patient. The predicted probability is 0.0197, and because 
the value is less than 0.5, the output maps to 0, which in turn maps to a prediction of "no heart 
disease." 
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Understanding the data 

The demo program uses the Cleveland Heart Disease dataset, a well-known classification 
benchmark dataset for statistics and machine learning. There are a total of 303 items. The raw 
data looks like this: 

56.0,  1,  2,  120.0,  236.0,  0,  0,  178.0,  0,  0.8,  1,   3,   3,   0 
62.0,  0,  4,  140.0,  268.0,  0,  2,  160.0,  0,  3.6,  3,   1,   6,   3 
63.0,  1,  4,  130.0,  254.0,  0,  1,  147.0,  0,  1.4,  2,   2,   ?,   2 
53.0,  1,  1,  140.0,  203.0,  1,  2,  155.0,  1,  3.1,  3,   0,   7,   1 
[0]   [1] [2]  [3]     [4]    [5] [6]  [7]    [8]  [9]  [10] [11] [12] HD 

The first 13 values on each line are the predictor values. The last value is 0 to 4, where 0 
indicates no heart disease and 1 to 4 indicate heart disease of some kind. Predictor [0] is patient 
age. Predictor [1] is a Boolean sex (0 = female, 1 = male). Predictor [2] is categorical chest pain 
type encoded as 1 to 4.  

Predictor [3] is blood pressure. Predictor [4] is cholesterol. Predictor [5] is a Boolean related to 
blood sugar (0 = low, 1 = high). Predictor [6] is categorical electrocardiographic result encoded 
as (0, 1, 2). Predictor [7] is maximum heart rate. Predictor [8] is a Boolean for angina (0 = no, 1 
= yes). Predictor [9] is ST ("S-wave, T-wave") graph depression. 

Predictor [10] is a categorical ST metric encoded as (1, 2, 3). Predictor [11] is a categorical 
count of colored fluoroscopy vessels encoded as (0, 1, 2, 3). Predictor [12] is a categorical value 
related to thalassemia encoded as (3, 6, 7). 

The first step in data preparation is to deal with six data items that have one or more missing 
values. I took the simplest approach, which is to just delete any rows with missing data, leaving 
297 data items. In my opinion, alternatives such as supplying an average column value, are 
usually not a good idea.  

 

Figure 4-2: Partial Cleveland Heart Disease Data 
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The raw data was prepared by min-max normalizing the five numeric predictor variable values, 
by (-1, +1) encoding the three Boolean predictors, and by 1-of-(N-1) encoding the five 
categorical predictors. The class values-to-predict were encoded so that 0 means no indication 
of heart disease, and 1 means indication of some form of disease. I replaced the comma 
delimiters with tab characters. 

After dealing with missing values, normalization, and encoding, the 297-item dataset was 
randomly split into three files: a 178-item (60 percent) set for training, and a 59-item (20 
percent) set for validation, and a 60-item (20 percent) set for testing. 

Because the Cleveland Heart Disease dataset has 13 dimensions, it's not possible to easily 
visualize it in a two-dimensional graph. But you can get a rough idea of the data from the partial 
graph in Figure 4-2. The graph shows only patient age and blood pressure for the first 160 items 
of the full dataset. As you can see, it's not possible to get a good prediction model using a 
simple linear technique like logistic regression or a base support vector machine linear model. 

The Cleveland program 

The complete program that generated the output shown in Figure 4-1 is shown in Code Listing 
4-1. The program begins with comments the program file name (the _bnn is not a standard 

convention and just stands for binary neural network) and versions of Python, TensorFlow, and 
Keras used, and then imports the NumPy, Keras, TensorFlow, and OS packages: 

# iris_dnn.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 

In a non-demo scenario, you'd want to include additional details in the comments. Because 
Keras and TensorFlow are under rapid development, it's a good idea to document which 
versions are being used. Version incompatibilities can be a significant problem when working 
with Keras and open-source software. 

Code Listing 4-1: Cleveland Heart Disease Binary Classification Program 

# cleveland_bnn.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
 
# 
===========================================================================
======= 
 
import numpy as np 
import keras as K 
import tensorflow as tf 
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import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 
 
class MyLogger(K.callbacks.Callback): 
  def __init__(self, n): 
    self.n = n  
 
  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      t_loss = logs.get('loss') 
      t_accu = logs.get('acc') 
      v_loss = logs.get('val_loss') 
      v_accu = logs.get('val_acc') 
      print("epoch = %4d  t_loss = %0.4f  t_acc = %0.2f%%  v_loss = %0.4f  
\ 
v_acc = %0.2f%%" % (epoch, t_loss, t_accu*100, v_loss, v_accu*100)) 
 
# 
===========================================================================
======= 
 
def main(): 
  # 0. get started 
  print("\nCleveland binary classification dataset using Keras/TensorFlow 
") 
  np.random.seed(1) 
  tf.set_random_seed(2) 
 
  # 1. load data 
  print("Loading Cleveland data into memory \n") 
  train_file = ".\\Data\\cleveland_train.txt" 
  valid_file = ".\\Data\\cleveland_validate.txt" 
  test_file = ".\\Data\\cleveland_test.txt" 
 
  train_x = np.loadtxt(train_file, usecols=range(0,18), 
   delimiter="\t",  skiprows=0, dtype=np.float32) 
  train_y = np.loadtxt(train_file, usecols=[18], 
    delimiter="\t", skiprows=0, dtype=np.float32) 
 
  valid_x = np.loadtxt(valid_file, usecols=range(0,18), 
   delimiter="\t",  skiprows=0, dtype=np.float32) 
  valid_y = np.loadtxt(valid_file, usecols=[18], 
    delimiter="\t", skiprows=0, dtype=np.float32) 
 
  test_x = np.loadtxt(test_file, usecols=range(0,18), 
   delimiter="\t",  skiprows=0, dtype=np.float32) 
  test_y = np.loadtxt(test_file, usecols=[18], 
    delimiter="\t", skiprows=0, dtype=np.float32) 
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  # 2. define model 
  init = K.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=1) 
  simple_adadelta = K.optimizers.Adadelta() 
  X = K.layers.Input(shape=(18,)) 
  net = K.layers.Dense(units=10, kernel_initializer=init, 
    activation='relu')(X) 
  net = K.layers.Dropout(0.25)(net)  # dropout for layer above 
  net = K.layers.Dense(units=10, kernel_initializer=init, 
    activation='relu')(net)  
  net = K.layers.Dropout(0.25)(net)  # dropout for layer above 
  net = K.layers.Dense(units=1, kernel_initializer=init, 
    activation='sigmoid')(net) 
  model = K.models.Model(X, net)  
 
  model.compile(loss='binary_crossentropy', optimizer=simple_adadelta, 
    metrics=['acc']) 
 
  # 3. train model 
  bat_size = 8 
  max_epochs = 2000 
  my_logger = MyLogger(int(max_epochs/5)) 
 
  print("Starting training ") 
  h = model.fit(train_x, train_y, batch_size=bat_size, verbose=0, 
    epochs=max_epochs, validation_data=(valid_x,valid_y), 
    callbacks=[my_logger]) 
  print("Training finished \n") 
 
  # 4. evaluate model 
  eval = model.evaluate(test_x, test_y, verbose=0) 
  print("Evaluation on test data: loss = %0.4f  accuracy = %0.2f%% \n" \ 
    % (eval[0], eval[1]*100) ) 
 
  # 5. save model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\cleveland_model.h5" 
  model.save(mp) 
 
  # 6. use model 
  unknown = np.array([[0.75, 1, 0, 1, 0, 0.49, 0.27, 1, -1, -1, 0.62, -1, 
0.40, 
    0, 1, 0.23, 1, 0]], dtype=np.float32) # .0197 
  predicted = model.predict(unknown) 
  print("Using model to predict heart disease for features: ") 
  print(unknown) 
  print("\nPredicted (0=no disease, 1=disease) is: ") 
  print(predicted) 
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# 
===========================================================================
======= 
 
if __name__=="__main__": 
  main() 

The program imports the entire Keras package and assigns an alias K. An alternative approach 

is to import only the modules you need, for example: 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

Even though Keras uses TensorFlow as its backend engine, you don't need to explicitly import 
TensorFlow, except in order to set its random seed. The OS package is imported only so that an 
annoying TensorFlow startup warning message will be suppressed. 

The program structure consists of a single main function, with a program-defined helper class, 

MyLogger, for custom logging. The class definition is: 

class MyLogger(K.callbacks.Callback): 
  def __init__(self, n): 
    self.n = n  

 
  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      t_loss = logs.get('loss') 
      t_accu = logs.get('acc') 
      v_loss = logs.get('val_loss') 
      v_accu = logs.get('val_acc') 
      print("epoch = %4d  t_loss = %0.4f  t_acc = %0.2f%%  v_loss = %0.4f  \ 
v_acc = %0.2f%%" % (epoch, t_loss, t_accu*100, v_loss, v_accu*100)) 

The MyLogger class is used only to display loss and accuracy metrics that are computed 

automatically, so the class initializer doesn't need to accept references to the training data. Most 
program-defined callbacks would pass that information like this: 

def __init__(self, n, data_x, data_y): 
  self.n = n 
  self.data_x = data_x 
  self.data_y = data_y 

The on_epoch_end() method pulls the current loss and accuracy metrics from the built-in logs 

dictionary and displays them. The demo program does this only so that the logging display 
messages can be reduced to once every 400 epochs instead of every epoch. Keras computes 
loss and accuracy for every training batch and averages the values over all batches at the end 
of each epoch. If you want more granular information, you can use the on_batch_end() 

method.  
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The main() function begins with: 

def main():  
  # 0. get started 
  print("\nCleveland binary classification dataset using Keras/TensorFlow ") 
  np.random.seed(1) 
  tf.set_random_seed(2) 

  # 1. load data 
  print("Loading Cleveland data into memory \n") 
  train_file = ".\\Data\\cleveland_train.txt" 
  valid_file = ".\\Data\\cleveland_validate.txt" 
  test_file = ".\\Data\\cleveland_test.txt" 
. . .  

In most situations you want your results to be reproducible. The Keras library uses the NumPy 
and TensorFlow global random-number generators, so it's good practice to set the seed values. 

The values used in the program, 1 and 2, are arbitrary. However, be aware that Keras program 

results typically aren't completely reproducible, due to order of numeric rounding of parallelized 
tasks. 

The program assumes that the training, validation, and test data files are located in a 
subdirectory named Data. The purpose of the validation data is to monitor its loss and accuracy 

during training to prevent training the model too much, which could result in an overfitted model. 

The basic idea is illustrated in the graph in Figure 4.3. The graph indicates that over time, 
loss/error on the training data will decline steadily. If you measure the loss/error on a hold-out 
set of validation data, you may be able to identify when model overfitting is starting to occur, and 
then you can stop training (known as "early stopping"). 

Although the train-validate-test idea is good in principle, in practice it usually doesn't work so 
well. The problem is that the loss/error values rarely drop in the nice, smooth way shown on the 
graph. Instead, the values tend to jump erratically, which makes identifying the start of model-
overfitting very difficult. 
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Figure 4-3: Train-Validate-Test in Theory  

Additionally, holding out data for validation purposes reduces the amount of data you have for 
training. For these reasons, train-validate-test isn't very common. The demo program shows you 
how to use the technique because there are times when its useful, and so that you can 
understand it if you see it used. 

The demo program doesn't have any information about the structure of the data files. I 
recommend that you include comments in your program that explain things such as how many 
predictor variables there are, types of encoding and normalization used, and so on. This kind of 
information is easy to remember when you’re writing your program, but difficult to remember a 
couple of weeks later. 

The training, validation, and test data is read into memory with these statements: 

  train_x = np.loadtxt(train_file, usecols=range(0,18), 
   delimiter="\t",  skiprows=0, dtype=np.float32) 
  train_y = np.loadtxt(train_file, usecols=[18], 
    delimiter="\t", skiprows=0, dtype=np.float32) 
 
 

  valid_x = np.loadtxt(valid_file, usecols=range(0,18), 
   delimiter="\t",  skiprows=0, dtype=np.float32) 
  valid_y = np.loadtxt(valid_file, usecols=[18], 
    delimiter="\t", skiprows=0, dtype=np.float32) 

  test_x = np.loadtxt(test_file, usecols=range(0,18), 
   delimiter="\t",  skiprows=0, dtype=np.float32) 
  test_y = np.loadtxt(test_file, usecols=[18], 
    delimiter="\t", skiprows=0, dtype=np.float32) 

In general, Keras needs feature data and label data stored in separate NumPy array-of-array 
style matrices. There are many ways to read data into memory, but the loadtxt() function is 

versatile enough to meet most problem scenarios. A common alternative approach is to use the 
read_csv() function from the Pandas ("Python Data Analysis Library") package. For example: 

  import pandas as pd 
  train_x = pd.read_csv(train_file, usecols=range(0,18), 
    delimiter="\t", header=None, dtype=np.float32).values 
  train_y = pd.read_csv(train_file, usecols=[18], 
    delimiter="\t", header=None, dtype=np.float32).values 

Notice that usecols can accept a list such as [0,1,2,3] or a Python range such as 

range(0,4). If you use the range() function, be careful to remember that the first parameter is 

inclusive, but the second parameter is exclusive. 

In addition to the comma character, common values for the delimiter parameter are "\t" (tab) 

and " " (single space) The default parameter value is None which means any whitespace. 
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The default dtype parameter value is numpy.float, which is an alias for Python float, and is 

the exact same as numpy.float64. The default data type for almost all Keras functions is 

numpy.float32, so the program specifies this type. The idea is that for the majority of machine 

learning problems, the advantage in precision gained by using 64-bit values is not worth the 
memory and performance penalty. 

Defining the neural network model 

The demo program defines an 18-(10-10)-1 deep neural network using this code: 

  # 2. define model 
  init = K.initializers.RandomNormal(mean=0.0, stddev=0.01, seed=1) 
  simple_adadelta = K.optimizers.Adadelta() 
  X = K.layers.Input(shape=(18,)) 
  net = K.layers.Dense(units=10, kernel_initializer=init, 
    activation='relu')(X) 
  net = K.layers.Dropout(0.25)(net)  # dropout for layer above 
  net = K.layers.Dense(units=10, kernel_initializer=init, 
    activation='relu')(net)  
  net = K.layers.Dropout(0.25)(net)  # dropout for layer above 
  net = K.layers.Dense(units=1, kernel_initializer=init, 
    activation='sigmoid')(net) 

 
  model = K.models.Model(X, net) 
  model.compile(loss='binary_crossentropy', optimizer=simple_adadelta, 
    metrics=['acc']) 

The demo sets up random Gaussian initial weights. Deep neural networks are often very 
sensitive to the initial values of the weights and biases, so Keras has several different 
initialization functions you can use. 

The training optimizer object is Adadelta() ("adaptive delta"), one of many advanced variations 

of basic stochastic gradient descent. Selecting a Keras optimizer can be a bit intimidating. Table 
4-1 lists five of the most commonly used optimizers. 

Table 4-1: Five Common Keras Optimizers 

Optimizer Description 

SGD(lr=0.01, momentum=0.0, 
decay=0.0, nesterov=False) 

Basic optimizer for simple neural networks 

RMSprop(lr=0.001, rho=0.9, 
epsilon=None, decay=0.0) 

Often used with recurrent neural networks, 
very similar to Adadelta 

Adagrad(lr=0.01, epsilon=None, 
decay=0.0) 

General purpose adaptive algorithm 
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Optimizer Description 

Adadelta(lr=1.0, rho=0.95, 
epsilon=None, decay=0.0) 

Advanced version of Adagrad, similar to 
RMSprop 

Adam(lr=0.001, beta_1=0.9, 
beta_2=0.999, epsilon=None, 
decay=0.0, amsgrad=False) 

Excellent general-purpose, adaptive 
algorithm 

One of the strengths of the Keras optimizers is that they all have sensible default parameter 
values, so you can try different optimizers very easily. 

The demo program specifies each layer separately, and then combines them using the Model() 

method. An alternative approach is to use the Sequntial() method. The two approaches 

create the exact same neural network, but are quite a bit different in terms of syntax. The choice 
is one of personal preference. 

The demo uses Dropout() layers. The purpose of Dropout is to reduce the likelihood of model 

overfitting. From a syntax point of view, you place a Dropout() layer immediately after the layer 

you wish to apply it to. The single parameter is the percentage of nodes in the affected layer to 
randomly drop on each training iteration. The advantage of using Dropout() is that it’s often 

effective in combating overfitting. The disadvantage is that you have to deal with additional 
hyperparameters to define where to apply dropout, and what dropout rate to use.. 

Note that it's possible to apply dropout to a neural network input layer; this is sometimes called 
jittering. However, using dropout on a neural network input layer is quite rare, and you should 
use it somewhat cautiously. 

The demo program uses relu (rectified linear unit) activation for the hidden nodes. The relu 

activation function is often more resistant to the vanishing gradient problem, which causes 
training to stall out, than tanh or sigmoid activation. 

The output layer, with its single node, uses sigmoid activation. This coerces the output node to 

a single value between 0.0 and 1.0, which can be interpreted as the probability that the target 
class is 1 (presence of heart disease in this problem). Put another way, if the output node value 
is less than 0.5, the prediction is class = 0 (no heart disease); otherwise, the prediction is class 
= 1 (heart disease). 

The model is compiled with binary_crossentropy as the loss function. For multiclass 

classification, you can use categorical_crossentropy or mean_squared_error, but for 

binary classification problems, you can use binary_crossentropy or mean_squared_error. 

The metrics parameter to compile() is optional. The demo program passes a Python list 

containing just 'acc' to indicate that classification accuracy (percentage correct predictions) 

should be computed for each batch during training.  
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Training and evaluating the model 

After training data has been read into memory and the neural network has been created, the 
program trains the network using these statements: 

  # 3. train model 
  bat_size = 8 
  max_epochs = 2000 
  my_logger = MyLogger(int(max_epochs/5)) 
  print("Starting training ") 
  h = model.fit(train_x, train_y, batch_size=bat_size, verbose=0, 
    epochs=max_epochs, validation_data=(valid_x,valid_y), 
    callbacks=[my_logger]) 
  print("Training finished \n") 

The batch size is a hyperparameter, and a good value must be determined by trial and error. 
The max_epochs argument is also a hyperparameter. Larger values typically lead to lower loss 

and higher accuracy on the training data, at the risk of overfitting on the test data. 

Training is configured to display loss and accuracy on the training data and the validation data 
every 2000 / 5 = 400 epochs. In a non-demo scenario, you'd want to see information displayed 
much more often. 

The fit() function returns an object that holds complete logging information. This is sometimes 

useful for analysis of a model that refuses to train. The demo program does not use the h 

object, so it could have been omitted. 

After training, the model is evaluated: 

  # 4. evaluate model 
  eval = model.evaluate(test_x, test_y, verbose=0) 
  print("Evaluation on test data: loss = %0.4f  accuracy = %0.2f%% \n" \ 
    % (eval[0], eval[1]*100) ) 

The evaluate() function returns a Python list. The first value at index [0] is the always value of 

the required loss function specified in the compile() function, binary_crossentropy in this 

case. Other values in the list are any optional metrics from the compile() function. In this 

example, the shortcut string 'acc' was passed so the value at index [1] holds the classification 

accuracy. The program multiples by 100 to convert accuracy from a proportion (like 0.8234) to a 
percentage (like 82.34 percent). 

Saving and using the model 

In most situations you'll want to save a trained model, especially if the training took hours or 
even longer. The demo program saves the trained model like so: 
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  # 5. save model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\cleveland_model.h5" 
  model.save(mp) 

Keras saves a trained model using the hierarchical data format (HDF) version 5. It's a binary 
format, so saved models can't be inspected with a text editor. In addition to saving an entire 
model, you can save just the model weights and biases, which is sometimes useful. You can 
also save the just model architecture without the weights. 

A saved Keras model can be loaded from a different program like this: 

print("Loading a saved model") 
mp = ".\\Models\\cleveland_model.h5" 
model = K.models.load_model(mp) 

An alternative to saving the fully trained model is to save different versions of the model as 
they're trained. You could add the save code to the on_epoch_end() method of the program-

defined MyLogger object, for example: 

def on_epoch_end(self, epoch, logs={}): 
  if epoch % self.n == 0: 
    m_name = ".\\Models\\cleveland_" + str(epoch) + "_model.h5" 
    self.model.save(m_name) 

Keras also has a built-in ModelCheckpoint callback, which has parameters that allow you to do 

things such as saving only if a specified metric improves (lower loss, higher accuracy). 

The demo program concludes by making a prediction: 

  # 6. use model 
  unknown = np.array([[0.75, 1, 0, 1, 0, 0.49, 0.27, 1, -1, -1, 0.62, -1, 
0.40, 
    0, 1, 0.23, 1, 0]], dtype=np.float32) 
  predicted = model.predict(unknown) 
  print("Using model to predict heart disease for features: ") 
  print(unknown) 
  print("\nPredicted (0=no disease, 1=disease) is: ") 
  print(predicted) 

Because the model was trained using normalized and encoded data, you must pass input 
values that have been normalized and encoded in the same way. Notice that the feature 
predictor values are passed as a NumPy array-of-arrays object. 

The output prediction is raw in the sense that it's just a value between 0.0 and 1.0, and 
therefore, it's up to you to interpret the meaning. You can do so programmatically along the 
lines of: 
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labels = ["no indication of heart disease", "indication of heart disease"] 
if predicted < 0.50: 
  result = labels[0] 
else: 
  result = labels[1] 
print(result) 

Note that it is possible to perform binary classification by encoding the two classes-to-predict as 
(1, 0) and (0, 1), and then treating the problem as multiclass classification (softmax output layer 
activation and categorical cross entropy loss). 

Summary and resources 

To perform binary classification, you encode the target labels using 0-or-1 encoding. The 
number of nodes in the input layer is determined by the structure of your normalized and 
encoded data. The number of output nodes should be one, and the activation function on the 
output layer should be set to sigmoid so the node value is between 0.0 and 1.0, where a value 

less than 0.5 indicates a prediction of class = 0; otherwise, the prediction is class = 1. 

The loss function should be set to binary_crossentropy, but you can use 

mean_squared_error if you wish. In general you should pass accuracy to the optional 

metrics list of the compile() function. 

Free parameters for binary classification include the number of hidden layers and the number of 
nodes in each hidden layer, optimizer algorithm (Adagrad, Adadelta, and Adam are often good 
choices), batch size, and the maximum number of training epochs to use. 

You can find the training, validation, and test data used by the demo program here.  

The demo program uses a custom, program-defined callback class. See information about 
Keras built-in callbacks here. 

This chapter described five of the most commonly used training optimizer algorithms. See 
information about all optimizers here. 

  

https://github.com/jdmccaffrey/keras-succinctly/tree/master/Cleveland
https://keras.io/callbacks/
https://keras.io/optimizers/
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Chapter 5 Image Classification 

The goal of image classification is to make a prediction where the variable to predict is a label 
that's associated with an image. For example, you might want to predict whether a photograph 
contains an "apple," "banana," or "orange." The most common way to perform image 
classification is to use what's called a convolutional neural network (CNN). 

 

Figure 5-1: Image Classification on the MNIST Dataset Using Keras 

The screenshot in Figure 5-1 shows a demonstration of image classification. The demo program 
begins by loading 1,000 training images and 100 test images into memory. Each image is a 
handwritten digit from '0' to '9' and is 28 pixels wide by 28 pixels tall, for a total of 784 pixels. 
The data is a subset of the MNIST (modified National Institute of Standards and Technology) 
benchmark dataset.  

Behind the scenes, the demo program creates a 784-32-64-100-10 convolutional neural 
network. The network has 784 input nodes and 10 output nodes, one for each possible digit or 
label. The meaning of the 32-64-100 part of the architecture will be explained shortly. The demo 
program trains the neural network model using 50 epochs. During training, the loss and 
accuracy values for the training data are displayed to make sure that training is making 
progress. 

After training completes, the trained model achieves a prediction accuracy of 98.00 percent on 
the test data (98 of 100 images correct, 2 incorrect). The demo concludes by making a 
prediction for a dummy, hypothetical, previously unseen image that vaguely resembles a 
handwritten digit. The predicted digit is a '6' because the largest value (1.0) of the output 
probabilities vector is at index [6]. 
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Understanding the data 

The MNIST dataset is essentially the "Hello World" dataset for deep learning. The full dataset 
consists of 60,000 training images and 10,000 test images. The demo program uses a subset of 
MNIST (1,000 training images and 100 test images) for simplicity. 

Each of the 28x28 pixels is a grayscale integer value between 0 (white) and 255 (black). Figure 
5-2 shows the first training image, displayed as 784 pixel values in hexadecimal format, and 
also as an image. 

 

Figure 5-2: A Typical MNIST Image  

The raw data is stored in an unusual format, and before coding the demo program, the raw data 
has to be preprocessed. Both the raw training and raw test datasets are stored in two files each. 
The first file contains just the pixel values, 784 values per line (60,000 lines for the training file, 
10,000 lines for the test file). The second file contains just the labels, '0' through '9', one per line. 

Additionally, all four files are stored in a proprietary binary format, and in big endian format, 
rather than in the far more common little endian format used by Intel and similar processors. 
And the four source files are compressed in .gz format. 

First, the four raw source files are unzipped. For the training data, the preprocessing in high 
level pseudo-code is: 

open (binary) pixel file for reading 

open (binary) labels file for reading 

open (text) result file for writing 

read and discard header bytes in pixels and labels file 
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loop 1000 times 

  read label from label file 

  write label to result file 

  write "##" separator 

  loop 784 times 

    read a pixel byte 

    write pixel to result file 

  end-loop 

  write a newline to result file 

end-loop 

close all files  

The result is a training file with 1000 lines that looks like this: 

2 ** 0 0 152 27 .. 0 
5 ** 0 0 38 122 .. 0 

The first value is the lass label, '0' through '9'. Next is a double-asterisk separator, just for 
readability. Next are the 784 pixel values. The 100-image test file has the same structure. The 
preprocessing does not encode the class labels, and does not normalize the pixel values. As 
you'll see shortly, encoding and normalization are done programmatically. 

When working with machine learning, getting your data ready is often time-consuming, 
annoying, and difficult. It's not uncommon for data preprocessing to require 90 percent (or more) 
of your total time and effort. 

Note that the Keras library comes with a pre-processed MNIST dataset that can be accessed 
like this: 

from keras.datasets import mnist 
(train_x, train_y), (test_x, test_y) = mnist.load_data() 

However, this is a bit of a cheat because in a non-demo scenario, you won't have a nice way 
like this to access your data. 

The MNIST program 

The complete program that generated the output shown in Figure 5-1 is shown in Code Listing 
5-1. The program begins with comments for the program file name (the _cnn is not a standard 

convention, and just stands for convolutional neural network) and versions of Python, 
TensorFlow, and Keras used, and then imports the NumPy, Keras, TensorFlow, and OS 
packages. The PyPlot module is also imported so that the dummy input image can be 
displayed: 

www.dbooks.org

https://www.dbooks.org/


 64 

# mnist_cnn.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 
import matplotlib.pyplot as plt 
 

In a non-demo scenario, you'd want to include lots of additional details in the comments. 
Because Keras and TensorFlow are under rapid development, it's a good idea to document 
which versions are being used. Version incompatibilities can be a significant problem when 
working with Keras and open-source software. 

Code Listing 5-1: MNIST Image Classification Program 

# mnist_cnn.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
 
# 
===========================================================================
======= 
 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 
import matplotlib.pyplot as plt 
 
class MyLogger(K.callbacks.Callback): 
  def __init__(self, n): 
    self.n = n  
 
  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      t_loss = logs.get('loss') 
      t_accu = logs.get('acc') 
      print("epoch = %4d  loss = %0.4f  accuracy = %0.2f%%" % \ 
(epoch, t_loss, t_accu*100)) 
 
def encode_y(y_mat, y_dim): 
  # convert to one-hot 
  n = len(y_mat)  # rows 
  result = np.zeros(shape=(n, y_dim), dtype=np.float32) 
  for i in range(n):  # each row 
    val = int(y_mat[i])    # like 5 
    result[i][val] = 1 



 65 

  return result 
 
# 
===========================================================================
======= 
 
def main(): 
  # 0. get started 
  print("\nMNIST CNN demo using Keras/TensorFlow ") 
  np.random.seed(1) 
  tf.set_random_seed(2) 
 
  # 1. load data 
  print("Loading subset of MNIST data into memory \n") 
  train_file = ".\\Data\\mnist_train_keras_1000.txt" 
  test_file = ".\\Data\\mnist_test_keras_100.txt" 
 
  train_x = np.loadtxt(train_file, usecols=range(2,786), 
    delimiter=" ",  skiprows=0, dtype=np.float32) 
  train_y = np.loadtxt(train_file, usecols=[0], 
    delimiter=" ", skiprows=0, dtype=np.float32) 
 
  train_x = train_x.reshape(train_x.shape[0], 28, 28, 1) 
  train_x /= 255 
  train_y = encode_y(train_y, 10)  # one-hot 
 
  test_x = np.loadtxt(test_file, usecols=range(2,786), 
    delimiter=" ",  skiprows=0, dtype=np.float32) 
  test_y = np.loadtxt(test_file, usecols=[0], 
    delimiter=" ", skiprows=0, dtype=np.float32) 
 
  test_x = test_x.reshape(test_x.shape[0], 28, 28, 1) 
  test_x /= 255  
  test_y = encode_y(test_y, 10)  # one-hot  
 
  # 2. define model 
  init = K.initializers.glorot_uniform() 
  simple_adadelta = K.optimizers.Adadelta() 
   
  model = K.models.Sequential() 
  model.add(K.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1,1), 
    padding='same', kernel_initializer=init, activation='relu', 
    input_shape=(28,28,1))) 
  model.add(K.layers.Conv2D(filters=64, kernel_size=(3, 3), strides=(1,1), 
    padding='same', kernel_initializer=init, activation='relu')) 
  model.add(K.layers.MaxPooling2D(pool_size=(2, 2))) 
  model.add(K.layers.Dropout(0.25)) 
  model.add(K.layers.Flatten()) 
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  model.add(K.layers.Dense(units=100, kernel_initializer=init, 
activation='relu')) 
  model.add(K.layers.Dropout(0.5)) 
  model.add(K.layers.Dense(units=10, kernel_initializer=init, 
activation='softmax')) 
 
  model.compile(loss='categorical_crossentropy', optimizer='adadelta', 
    metrics=['acc']) 
 
  # 3. train model 
  bat_size = 128 
  max_epochs = 50 
  my_logger = MyLogger(int(max_epochs/5)) 
 
  print("Starting training ") 
  model.fit(train_x, train_y, batch_size=bat_size, epochs=max_epochs, 
verbose=0, 
    callbacks=[my_logger]) 
  print("Training complete") 
 
  # 4. evaluate model 
  loss_acc = model.evaluate(test_x, test_y, verbose=0) 
  print("\nTest data loss = %0.4f  accuracy = %0.2f%%" % \ 
(loss_acc[0], loss_acc[1]*100) ) 
 
  # 5. save model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\mnist_model.h5" 
  model.save(mp) 
 
  # 6. use model 
  print("Using model to predict dummy digit image: ") 
  unknown = np.zeros(shape=(28,28), dtype=np.float32) 
  for row in range(5,23): unknown[row][9] = 180  # vertical line 
  for rc in range(9,19): unknown[rc][rc] = 250   # diagonal line 
  plt.imshow(unknown, cmap=plt.get_cmap('gray_r')) 
  plt.show() 
 
  unknown = unknown.reshape(1, 28,28,1) 
  predicted = model.predict(unknown) 
  print("\nPredicted digit is: ") 
  print(predicted)  
 
# 
===========================================================================
======= 
 
if __name__=="__main__": 
  main() 
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The program imports the entire Keras package and assigns an alias K. An alternative approach 

is to import only the modules you need, for example: 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

Even though Keras uses TensorFlow as its backend engine, you don't need to explicitly import 
TensorFlow, except in order to set its random seed. Instead of importing the entire TensorFlow 
package, you could import only the module need to set the random seed. The OS package is 
imported only so that an annoying TensorFlow startup warning message will be suppressed. 

The program structure consists of a single main function, plus a program-defined helper class, 

MyLogger, for custom logging, and a program-defined helper function to programmatically 

encode the labels. The logging class definition is: 

class MyLogger(K.callbacks.Callback): 
  def __init__(self, n): 
    self.n = n 
 
  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      t_loss = logs.get('loss') 
      t_accu = logs.get('acc') 
      print("epoch = %4d  loss = %0.4f  accuracy = %0.2f%%" % \ 
(epoch, t_loss, t_accu*100)) 

The MyLogger class is used only to display loss and accuracy metrics that are computed 

automatically, so the class initializer doesn't need to accept references to the training data. 

Most program-defined callbacks would pass that information like this: 

def __init__(self, n, data_x, data_y): 
  self.n = n 
  self.data_x = data_x 
  self.data_y = data_y 

The on_epoch_end() method pulls the current loss and accuracy metrics from the built-in logs 

dictionary and displays them. The demo program does this only so that the logging display 
messages can be reduced to once every 10 epochs instead of every epoch. Keras computes 
loss and accuracy for every training batch and averages the values over all batches at the end 
of each epoch. If you want more granular information, you can use the on_batch_end() 

method.  

The main() function begins with: 
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def main():  
  # 0. get started 
  print("\nMNIST CNN demo using Keras/TensorFlow ") 
  np.random.seed(1) 
  tf.set_random_seed(2) 
 
  # 1. load data 
  print("Loading subset of MNIST data into memory \n") 
  train_file = ".\\Data\\mnist_train_keras_1000.txt" 
  test_file = ".\\Data\\mnist_test_keras_100.txt" 
. . .  

In most situations, you want your results to be reproducible. The Keras library uses the NumPy 
and TensorFlow global random-number generators, so it's good practice to set the seed values. 
The values used in the program, 1 and 2, are arbitrary. However, be aware that the Keras 

program results typically aren't completely reproducible due, in part, to order of numeric 
rounding of parallelized tasks. 

The program assumes that the training and test data files are located in a subdirectory named 
Data. The demo program doesn't have any information about the structure of the data files. I 

recommend that you include comments in your program that explain things such as how many 
predictor variables there are, types of encoding and normalization used, and so on. This kind of 
information is easy to remember when your writing your program, but difficult to remember a 
couple of weeks later. 

The training data is read into memory by these two statements: 

  train_x = np.loadtxt(train_file, usecols=range(2,786), 
    delimiter=" ", skiprows=0, dtype=np.float32) 
  train_y = np.loadtxt(train_file, usecols=[0], 
    delimiter=" ", skiprows=0, dtype=np.float32) 
 

In general, Keras needs feature data and label data stored in separate NumPy array-of-array 
style matrices. There are many ways to read data into memory, but the loadtxt() function is 

versatile enough to meet most problem scenarios. An alternative approach is to use the 
read_csv() function from the Pandas (Python Data Analysis Library) package. 

The default dtype parameter value is numpy.float, which is an alias for Python float, and is 

the exact same as numpy.float64. But the default data type for almost all Keras functions is 

numpy.float32, so the program specifies this type. The idea is that for the majority of machine 

learning problems, the advantage in precision gained by using 64-bit values is not worth the 
memory and performance penalty. 

After the training data is in memory, it is encoded and normalized like so: 

  train_x = train_x.reshape(train_x.shape[0], 28, 28, 1) 
  train_x /= 255 
  train_y = encode_y(train_y, 10)  # one-hot 
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A Keras CNN expects image input data as a NumPy array with four dimensions: number of 
items, width of image, height of image, and number of channels (1 for grayscale, 3 for an RGB 

image). 

Because all pixel values are between 0 and 255, dividing by 255 results in all pixel values being 
normalized to 0.0 to 1.0, which is in effect min-max normalization. The y-values are one-hot 
encoded, for example, the first training image label is a '5' digit, so it is encoded as (0, 0, 0, 0, 0, 
1, 0, 0, 0, 0). 

The test data is read, reshaped, normalized, and encoded in the same way as the training data. 
The two main advantages of programmatically encoding and normalizing data are that you can 
easily experiment with different approaches, and that when you use the trained model to make 
predictions, you can use raw, unnormalized or encoded input values. The main disadvantage of 
programmatically encoding and normalizing is that it adds complexity to your program. 

Defining the Convolutional Neural Network model 

The demo program prepares to create the CNN model with these statements: 

  init = K.initializers.glorot_uniform() 
  simple_adadelta = K.optimizers.Adadelta() 

The demo sets up initial weights using the Glorot uniform algorithm, which, because it is the 
default, could have been omitted. Deep neural networks are often very sensitive to the initial 
values of the weights and biases, so Keras has several different initialization functions you can 
use. 

The training optimizer object is Adadelta() ("adaptive delta"), one of many advanced variations 

of basic stochastic gradient descent. Reasonable alternatives include RMSprop(), Adagrad(), 

and Adam(); however, SGD() typically does not work well for CNN image classification. 

The CNN network is defined like so: 

  model = K.models.Sequential() 
  model.add(K.layers.Conv2D(filters=32, kernel_size=(3, 3), strides=(1,1), 
    padding='same', kernel_initializer=init, activation='relu', 
    input_shape=(28,28,1))) 
  model.add(K.layers.Conv2D(filters=64, kernel_size=(3, 3), strides=(1,1), 
    padding='same', kernel_initializer=init, activation='relu')) 
  model.add(K.layers.MaxPooling2D(pool_size=(2, 2))) 
  model.add(K.layers.Dropout(0.25)) 
  model.add(K.layers.Flatten()) 
  model.add(K.layers.Dense(units=100, kernel_initializer=init, 
activation='relu')) 
  model.add(K.layers.Dropout(0.5)) 
  model.add(K.layers.Dense(units=10, kernel_initializer=init, 
activation='softmax')) 
  model.compile(loss='categorical_crossentropy', optimizer='adadelta', 
    metrics=['acc']) 
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There's a lot going on here. The key to a CNN is the Conv2D() layer. The idea of convolution is 

best explained by a diagram, such as the one in Figure 5-3. The figure shows a simplified 5x5 
image in blue. The image is padded on top and bottom and on left and right by a single 
row/column of 0-values, shown in gray. 

Convolution uses a filter (sometimes called a kernel). In Figure 5-3, there's a 3x3 filter, shown in 
orange. The convolution filter values are essentially the same as weight values in a regular 
neural network. 

You can see that the filter overlays the padded image, starting in the upper left. The output 
result, shown in yellow, is a 5x5 matrix where the values are calculated as shown. After the filter 
is applied, the filter is shifted to the right by one pixel—the shift distance is called the stride. 

 

Figure 5-3: Convolution 

The ideas underlying convolution are very deep. Briefly, using convolution dramatically 
decreases the number of weights in a CNN, making training feasible for large images. 
Additionally, convolution allows the model to handle mages that are shifted a few pixels up or 
down.   

The Keras Conv2D() function accepts 15 parameters, but only two are required: filters (the 

number of filters) and kernel_size. The strides default is (1,1), so it could have been omitted in 

the demo code. The padding parameter can be 'valid' or 'same', where 'valid' is the 

default value. Using 'same' means that Conv2D() will try to have even padding all around the 

image, as closely as possible. Using 'valid' means that padding will be added only to the right 

and to the bottom of the image.  

The demo adds a second convolutional layer with 64 filters. Additional layers, and larger 
number of filters, increase the predictive power of a CNN, at the expense of increasing the 
numbers of weights (filter values) and therefore, increasing the training time. 
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After the two convolutional layers, the demo program adds a MaxPooling2D() layer. CNN 

pooling is optional, but is usually employed. A 2x2 pooling layer scans through its input matrix, 
looking at each possible 2x2 set of cells. The four values in each 2x2 grid are replaced by a 
single value—the largest of the current four values. Pooling reduces the number of parameters, 
and therefore speeds up training. Pooling also smooths out images, which often leads to a 
better model in terms of accuracy. 

Ultimately, the CNN is a classifier, so it needs a final layer that isn't multidimensional. The 
Flatten() layer reshapes the current matrix, which began as (28, 28, 1), into a single 

dimension so that one or more Dense() layers can be applied and categorical cross entropy 

can be used. The demo program also adds two Dropout() layers to control overfitting. 

Working with CNN models can be intimidating at first, but after working with a few examples, the 
basic ideas start to become clear. At a high level of abstraction, the demo model accepts 784 
pixel values (all between 0.0 and 1.0), and outputs a single vector of 10 values that sum to 1.0 
and can be interpreted as the probability of each of the 10 possible digits. The connecting 
plumbing is complicated to be sure, but that plumbing is just variations of basic neural network 
input-output. 

The model is compiled with categorical_crossentropy as the loss function. You could use 

mean_squared_error instead.  

Training and evaluating the model 

After training data has been read into memory and the CNN model has been defined, the model 
is trained by these statements: 

  # 3. train model 
  bat_size = 128 
  max_epochs = 50 
  my_logger = MyLogger(int(max_epochs/5)) 
  print("Starting training ") 
  model.fit(train_x, train_y, batch_size=bat_size, epochs=max_epochs, 
    verbose=0, callbacks=[my_logger]) 
  print("Training complete") 

The batch size is a hyperparameter, and a good value must be determined by trial and error. 
The max_epochs argument is also a hyperparameter. Larger values typically lead to lower loss 

and higher accuracy on the training data, at the risk of overfitting on the test data. 

Training is configured to display loss and accuracy on the training data every 50 / 5 = 10 
epochs. In a non-demo scenario, you'd want to see information displayed much more often. 

The fit() function returns an object that holds complete logging information. This is sometimes 

useful for analysis of a model that refuses to train. The demo program does not capture the 
return history object. 

After training, the model is evaluated: 
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  # 4. evaluate model 
  loss_acc = model.evaluate(test_x, test_y, verbose=0) 
  print("\nTest data loss = %0.4f  accuracy = %0.2f%%" % \ 
    (loss_acc[0], loss_acc[1]*100) ) 

The evaluate() function returns a Python list. The first value at index [0] is the always value of 

the required loss function specified in the compile() function, categorical_crossentropy in 

this case. Other values in the list are any optional metrics from the compile() function. In this 

example, the shortcut string 'acc' was passed to compile(), so the value at index [1] holds 

the classification accuracy.  

Saving and using the model 

In most situations you'll want to save a trained model, especially if the training took hours or 
even longer. The demo program saves the trained model like so: 

  # 5. save model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\mnist_model.h5" 
  model.save(mp) 

Keras saves a trained model using the hierarchical data format (HDF) version 5. It's a binary 
format, so saved models can't be inspected with a text editor. In addition to saving an entire 
model, you can save just the model weights and biases, which is sometimes useful if you intend 
to transfer those values to another system. You can also save the model architecture without 
the weights. 

A saved Keras model can be loaded from a different program like this: 

print("Loading saved MNIST model") 
mp = ".\\Models\\mnist_model.h5" 
model = K.models.load_model(mp) 

An alternative to saving the fully trained model is to save different versions of the model as 
they're trained. You could add the save code to the on_epoch_end() method of the program-

defined MyLogger object, for example: 

def on_epoch_end(self, epoch, logs={}): 
  if epoch % self.n == 0: 
    mdl_name = ".\\Models\\mnist_" + str(epoch) + "_model.h5" 
    self.model.save(mdl_name) 
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The demo program concludes by making a prediction: 
 
  # 6. use model 
  print("Using model to predict dummy digit image: ") 
  unknown = np.zeros(shape=(28,28), dtype=np.float32) 
  for row in range(5,23): unknown[row][9] = 180  # vertical line 
  for rc in range(9,19): unknown[rc][rc] = 250   # diagonal line 
  plt.imshow(unknown, cmap=plt.get_cmap('gray_r')) 
  plt.show() 

  unknown = unknown.reshape(1, 28,28,1) 
  predicted = model.predict(unknown) 
  print("\nPredicted digit is: ") 
  print(predicted) 

The demo sets up a pseudo-digit image. The first for statement creates a vertical stroke that's 

18 pixels tall with medium-high intensity (180). The second for statement creates a diagonal 

stroke connected to the first stroke, from upper left to lower right with high intensity (250). 

Because the model was trained using non-normalized data, you must pass input value that are 
not normalized—values between 0 and 255. 

The demo program displays a visual representation of the pseudo-digit using the PyPlot library's 
imshow() function ("image show"). Somewhat surprisingly, imshow() doesn't show anything 

when called—you must call the show() function. 

To make a prediction, because the CNN model was trained using input with four dimensions, 
you must pass a multidimensional array that has four dimensions, (1 28, 28, 1). The first 1 value 
means one image, and the second 1 value means grayscale (a singe value between 0 and 
255). 

The output prediction is raw in the sense that it's just a value between 0.0 and 1.0, and 
therefore, it's up to you to interpret the meaning. You can do so programmatically along the 
lines of: 

labels = ["zero", "one", "two", "three", "four", "five", "six" "seven", 
"eight", "nine"] 
idx = np.argmax(predicted[0]) 
result = labels[idx] 
print("Predicted digit = " , result) 

Summary and resources 

To perform CNN image classification, you can encode and normalize data in a preprocessing 
step, or you can do so programmatically. The Conv2D() layer expects an input with shape 

(width, height, channels) where channels = 1 for a grayscale image. The number of filters, 
kernel size, and strides are hyperparameters, and their values must be determined by 
experimentation. 
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Using one or more MaxPooling2D() and Dropout() layers is optional, but common. You must 

use a Flatten() layer before a final Dense() output layer so you can use a cross entropy loss 

function. For training, Adagrad, Adadelta, RMSprop, and Adam are all reasonable choices. The 
batch size and the maximum number of training epochs to use are hyperparameters. 

You can find the training and test data used by the demo program here. 

The demo program uses only a few of the parameters to Conv2D(). For additional information, 

see the documentation here. 

The demo program uses MaxPooling2D(). See additional details and information about other 

pooling methods here.  

https://github.com/jdmccaffrey/keras-succinctly/tree/master/MNIST
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
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Chapter 6 Sentiment Analysis 

The goal of sentiment analysis is to examine text data and predict if the mood is positive or 
negative. For example, you might want to programmatically process email messages from users 
of some product to predict if the sender is happy or not happy with the product. 

 

Figure 6-1: Sentiment Analysis using Keras 

The screenshot in Figure 6-1 shows a demonstration of sentiment analysis. The demo program 
begins by loading 620 training data items and 667 test data items into memory. Each item is a 
movie review with up to 50 words, where the review can be positive (1) or negative (0). 

Behind the scenes, the demo program creates an LSTM (long, short-term memory) neural 
network. The LSTM network has an embedding layer that converts each word in a review into a 
numeric vector with 32 values. The LSTM network has a memory cell size of 100. The network 
has a total of 4,209,845 weights and biases values that must be determined. 

The LSTM model is trained using five epochs (a small number to keep the size of the 
screenshot in Figure 6-1 small). After training, the demo program computes the model's 
accuracy on the test data (81.71% or about 54 out of 67 correct). The demo concludes by 
making a prediction for a new, previously unseen review of "the movie was a great waste of my 
time," and correctly predicts the sentiment is negative. 
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Understanding the data 

The IMDB (Internet Movie Database) movie review dataset consists of a total of 50,000 reviews. 
There are 25,000 training reviews and 25,000 test reviews. Each set has 12,500 positive review 
and 12,500 negative reviews. The raw data was collected as part of a research project and can 
be found here.  

Getting the raw data into a usable format is a major challenge because the data is structured as 
one file per review. Here's an example of a positive review: 

When I read other comment,i decided to watch this movie...<br /><br 

/>First, cast specially Michael Madsen and Tamer Karadagli; good 

enough...<br /><br />Film,very intelligence and interesting because 

,cast have a lot of international specially European actor and actress 

like from Turkey and Russsia...<br /><br />Second,Story is basic and 

you can guess but if you interesting action good play you'll like in 

my opinion...<br /><br />Third,Final chapter is not special or 

interesting,it's regular like other action movies...<br /><br 

/>Finally,i recommend to watch this movie...And i hope You'll love it 

enjoy :D 

Notice that there are misspelled words, incorrect grammar and punctuation, inconsistent 
capitalization, embedded HTML <br/> tags, and other factors to deal with. When working with 

natural language problems, the data preprocessing steps can often take 90 percent or more of 
the time and effort required to build a predictive model. 

The Keras library has a built-in version of the IMDB dataset that can be loaded into memory like 
this: 

from keras.datasets import imdb 
(x_train, y_train), (x_test, y_test) = imdb.load_data() 

However, using this approach is somewhat artificial, in my opinion, and hides many important 
details. For simplicity, I created a file of training data and a file of test data where each movie 
review is up to 50 words in length. The resulting data looks like this: 

0 0 0 0 0 0 13 510 4 115 1331 363 . . . 1708 298 0 
0 0 12 28 111 6 172 7 32188 9 4 88 31 . . . 1487 151 0 

Each line is one review. The first few values on each line are zeroes for padding so that all 
reviews have exactly 50 values. The last value on each line is the sentiment: 0 for a negative 
review, and 1 for a positive review. 

Each word is encoded using the same scheme as used by the built-in Keras IMDB dataset. 
Values 0 to 3 have special meaning. A value of 0 is used for padding. A value of 1 is used to 
indicate the start of a review in situations where the data is not delimited by newlines. A value of 
2 is used for out-of-vocabulary (OOV)—words in the test data that were not seen in the training 
data. A value of 3 is reserved for custom usage. 

Additionally, all words are converted to lower case, and all punctuation is removed, except for 
the single quote character, which is important for contractions like don't and wouldn't. 

http://ai.stanford.edu/~amaas/data/sentiment/
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Each word ID is based upon the frequency of the word in the training data, where 4 is the most 
frequent ("the"), 5 is the second most frequent ("a"), and so on. The training data has a total of 
129,888 distinct words, so the last word in the vocabulary has index 129,888 + 4 - 1 = 129,891. 

As you'll see shortly, when using LSTM networks for natural language problems such as 
sentiment analysis, there's a tight coupling between data encoding and the LSTM network, and 
you need to know exactly how words are indexed. 

The IMDB program 

The complete program that generated the output shown in Figure 6-1 is shown in Code Listing 
6-1. The program begins with comments for the program file name and versions of Python, 
TensorFlow, and Keras used, and then imports the NumPy, Keras, TensorFlow, and OS 
packages: 

# imdb_lstm.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 

In a non-demo scenario, you'd want to include additional details in the comments. Because 
Keras and TensorFlow are under rapid development, you should always document which 
versions are being used. Version incompatibilities can be a significant problem when working 
with Keras and other open-source software. 

Code Listing 6-1: IMDB Movie Review Sentiment Analysis Program 

# imdb_lstm.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
 
# 
===========================================================================
======= 
 
import numpy as np 
import keras as K 
import tensorflow as tf 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 
 
def main(): 
  # 0. get started 
  print("\nIMDB sentiment analysis using Keras/TensorFlow ") 
  np.random.seed(1) 
  tf.set_random_seed(1) 
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  # 1. load data 
  max_review_len = 50 
  print("Loading train and test data, max len = %d words\n" % 
max_review_len) 
 
  train_x = np.loadtxt(".\\Data\\imdb_train_50w.txt", delimiter=" ", 
    usecols=range(0,max_review_len), dtype=np.float32) 
  train_y = np.loadtxt(".\\Data\\imdb_train_50w.txt", delimiter=" ", 
    usecols=[max_review_len], dtype=np.float32) 
 
  test_x = np.loadtxt(".\\Data\\imdb_test_50w.txt", delimiter=" ", 
    usecols=range(0,max_review_len), dtype=np.float32) 
  test_y = np.loadtxt(".\\Data\\imdb_test_50w.txt", delimiter=" ", 
    usecols=max_review_len, dtype=np.float32) 
 
  # 2. define model 
  e_init = K.initializers.RandomUniform(-0.01, 0.01, seed=1) 
  init = K.initializers.glorot_uniform(seed=1) 
  simple_adam = K.optimizers.Adam() 
  nw = 129892  # must be > vocabulary size (don't forget +4) 
  embed_vec_len = 32  # values per word -- 100-500 is typical 
 
  model = K.models.Sequential() 
  model.add(K.layers.embeddings.Embedding(input_dim=nw, 
output_dim=embed_vec_len, 
    embeddings_initializer=e_init, mask_zero=True)) 
  model.add(K.layers.LSTM(units=100, kernel_initializer=init, dropout=0.2)) 
  model.add(K.layers.Dense(units=1, kernel_initializer=init, 
activation='sigmoid')) 
  model.compile(loss='binary_crossentropy', optimizer=simple_adam, 
metrics=['acc']) 
  print(model.summary()) 
 
  # 3. train model 
  bat_size = 10 
  max_epochs = 5 
  print("\nStarting training ") 
  model.fit(train_x, train_y, epochs=max_epochs, batch_size=bat_size, 
    shuffle=True, verbose=1)  
  print("Training complete \n") 
 
  # 4. evaluate model 
  loss_acc = model.evaluate(test_x, test_y, verbose=0) 
  print("Test data: loss = %0.6f  accuracy = %0.2f%% " % \ 
    (loss_acc[0], loss_acc[1]*100)) 
 
  # 5. save model 
  print("Saving model to disk \n") 
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  mp = ".\\Models\\imdb_model.h5" 
  model.save(mp) 
 
  # 6. use model 
  print("Sentiment for \"the movie was a great waste of my time\"") 
  rev = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 
                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 
                   0, 4, 20, 16, 6, 86, 425, 7, 58, 64]], dtype=np.float32) 
  prediction = model.predict(rev)  
  print("Prediction (0 = negative, 1 = positive) = ", end="") 
  print("%0.4f" % prediction[0][0]) 
 
# 
===========================================================================
======= 
 
if __name__ == "__main__": 
  main() 

The program imports the entire Keras package and assigns an alias K. An alternative approach 

is to import only the modules you need, for example: 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

Even though Keras uses TensorFlow as its backend engine, you don't need to explicitly import 
TensorFlow, except in order to set its random seed. The OS package is imported only so that an 
annoying TensorFlow startup warning message will be suppressed. 

The program structure consists of a single main function, with no helper functions. The program 
begins with: 

def main(): 
  # 0. get started 
  print("\nIMDB sentiment analysis using Keras/TensorFlow ") 
  np.random.seed(1) 
  tf.set_random_seed(1) 
 
  # 1. load data 
  max_review_len = 50 
  print("Loading train and test data, max len = %d words\n" % max_review_len) 
 
  train_x = np.loadtxt(".\\Data\\imdb_train_50w.txt", delimiter=" ", 
    usecols=range(0,max_review_len), dtype=np.float32) 
  train_y = np.loadtxt(".\\Data\\imdb_train_50w.txt", delimiter=" ", 
    usecols=[max_review_len], dtype=np.float32) 
. . .  
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In most situations, you want to make your results reproducible. The Keras library makes 
extensive use of the NumPy global random-number generator, so it's good practice to set the 
seed value. The seed value used in the program, 1, is arbitrary. Similarly, because Keras uses 
TensorFlow, you'll usually want to set its seed, too. However, even if you set all random seeds, 
program results typically aren't completely reproducible due, in part, to order of numeric 
rounding of parallelized tasks. 

I indent with two spaces rather than the normal four spaces because of page-width limitations. 
All normal error-checking has been removed to keep the main ideas as clear as possible. 

The test data is read into memory using the same technique: 

  test_x = np.loadtxt(".\\Data\\imdb_test_50w.txt", delimiter=" ", 
    usecols=range(0,max_review_len), dtype=np.float32) 
  test_y = np.loadtxt(".\\Data\\imdb_test_50w.txt", delimiter=" ", 
    usecols=max_review_len, dtype=np.float32) 

The program assumes that the training and test data files are located in a subdirectory named 
Data. The program doesn't have any information about the structure of the data files. I strongly 

recommend that you include program comments describing your data format. Data format 
information is easy to remember when you’re writing your program, but difficult to remember a 
couple of weeks later. 

The training data is read into memory using the NumPy loadtxt() function. There are many 

ways to read data into memory, but the loadtxt() function is versatile enough to meet most 

problem scenarios. The NumPy genfromtxt() function is very similar but gives you a few 

additional options, such as dealing with missing data. The loadtxt() function has a large 

number of parameters, but in most cases you only need usecols, delimiter, and dtype.   

Notice that usecols can accept a list such as [max_review_len] or a Python range such as 

range(0,max_review_len). If you use the range() function, be careful to remember that the 

first parameter is inclusive, but the second parameter is exclusive. 

The default dtype parameter value is numpy.float, which is an alias for Python float, and is 

the exact same as numpy.float64. But the default data type for almost all Keras functions is 

numpy.float32, so the program specifies this type. The idea is that for the majority of machine 

learning problems, the advantage in precision gained by using 64-bit values is not worth the 
memory and performance penalty. 

Instead of using a NumPy function such as loadtxt() to read data into memory, a different 

approach is to use the Pandas ("panel data" or "Python Data Analysis Library") library, which 
has many advanced data manipulation features. However, Pandas has a significant learning 
curve. 

Defining the LSTM neural network model 

The program defines an LSTM neural network using this code: 
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  # 2. define model 
  e_init = K.initializers.RandomUniform(-0.01, 0.01, seed=1) 
  init = K.initializers.glorot_uniform(seed=1) 
  simple_adam = K.optimizers.Adam() 
  nw = 129892 
  embed_vec_len = 32 
 
  model = K.models.Sequential() 
  model.add(K.layers.embeddings.Embedding(input_dim=nw, 
output_dim=embed_vec_len, 
    embeddings_initializer=e_init, mask_zero=True)) 
  model.add(K.layers.LSTM(units=100, kernel_initializer=init, dropout=0.2)) 
  model.add(K.layers.Dense(units=1, kernel_initializer=init, 
activation='sigmoid')) 
  model.compile(loss='binary_crossentropy', optimizer=simple_adam, 
metrics=['acc']) 

  print(model.summary()) 

There's a lot going on here, so bear with me. The LSTM has two major components and several 
minor components. The first major component is the Embedding() layer. When working with 

natural language, you can feed word indexes such as 4 for "the" and 20 for "movie" directly to 
an LSTM network. However, this approach doesn't give very good results. A better approach is 
to convert each word index into a vector of real values such as (0.4508, 1.3233, . . 0.9305). 

The vectors must be constructed in a way so that words that are close semantically, such as 
"excellent" and "wonderful," have vectors that are close numerically. There are three major 
ways to construct a set of word embeddings. First, you can create a custom set of embeddings 
based on your training data, using a separate tool, such as the Word2Vec library. Second, you 
can use a set of pre-built word embeddings based on a standard corpus, such as a large news 
feed of several hundred thousand stories from Google, or the text of all Wikipedia articles. The 
demo program uses a third approach, which is to compute the word embeddings on the fly, 
using the training data. This is a difficult problem, and is responsible for 4,156,444 of the 
4,209,845 weights and biases of the model. 

Notice that the Embedding() constructor requires the largest word index value. The demo uses 

129,892 rather than 129,891 to indicate that you can have extra indexes if you wish. The demo 
program specifies an embedding vector length of 32. This value is a free parameter. For larger 
problems, a typical vector length is 100 to 500. Table 6-1 summarizes the seven parameters for 
an Embedding() layer. 

Table 6-1: Embedding Layer Parameters 

Name Description 

input_dim Size of the vocabulary, i.e. maximum integer index + 1 

output_dim Dimension of the dense embedding 

embeddings_initializer Initializer for the embeddings matrix 
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Name Description 

embeddings_regularizer Regularizer function applied to the embeddings matrix 

embeddings_constraint Constraint function applied to the embeddings matrix 

mask_zero Whether or not the input value 0 is a padding value 

input_length Length of input sequences, when it is constant 

The second major component of the LSTM network is the LSTM() layer. LSTMs are fantastically 

complex software modules, but the key idea is that they have a memory, or equivalently, they 
have state. Suppose you knew that one word of a sentence was "few" and you wanted to 
predict the next word. You'd certainly have to take a wild guess. But if you knew the previous 
words were "You can't make an omelet without breaking a few…", then you'd almost surely 
predict the next word to be "eggs." In short, LSTM networks have state and can work well for 
sequences of input words. 

You can get a rough idea of what an LSTM cell is by examining the diagram in Figure 6-2. 

 

Figure 6-2: A Simplified LSTM Cell 

In Figure 6-2, x(t) is the input at time t and h(t) is the corresponding output. The vector c(t) is the 
cell state, or memory. The output, h(t), depends on the current input and the cell state. The 
internal plumbing of an LSTM cell is very complex, but fortunately, when using Keras you only 
need a few of the 23 LSTM() parameters. 

The demo program specifies the memory via the units=100 argument. Memory size is a free 

parameter. Because of the complexity of an LSTM() layer, you can't apply dropout by using a 

standard Dropout() layer, so there's an internal dropout mechanism that the demo applies as a 

dropout=0.2 argument. 
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After the LSTM() layer, the model has a single Dense() layer with sigmoid activation. The idea 

here is to compress the output of the LSTM() layer down to a single value between 0.0 and 1.0, 

which can be interpreted as the probability that the predicted class = 1. Put another way, this 
means that if the output is less than 0.5, the model predicts 0 = negative sentiment; otherwise, 
the model predicts 1 = positive sentiment. 

The LSTM model is compiled using binary cross entropy as the loss function because the class 
labels are 0 or 1. In sentiment analysis scenarios where you have three or more class labels, 
such as negative = (1, 0, 0), neutral = (0, 1, 0) and positive = (0, 0, 1), you would change the 
activation function on the last network layer from sigmoid to softmax, and use categorical 

cross entropy for the loss function. 

You can loosely think of the compilation process as translating Keras code into TensorFlow 
code (or CNTK code or Theano code). You must pass values to the optimizer and loss 

parameters so that the fit() method will know how to train the model. The metrics parameter 

is optional. The program passes a Python list containing just 'acc' to indicate that classification 

accuracy (percentage correct predictions) should be computed during training. 

The demo program displays a summary of the LSTM model using the summary() function. The 

primary purpose of using summary() is to check how many weights and biases your model has, 

which gives you an idea of how long training will take. It's possible to construct deep networks 
that just aren't trainable because they have too many weights and biases.  

Training and evaluating the model 

After training data has been read into memory and the LSTM network has been created, the 
demo program trains the model using these statements: 

  # 3. train model 
  bat_size = 10 
  max_epochs = 5 
  print("\nStarting training ") 
  model.fit(train_x, train_y, epochs=max_epochs, batch_size=bat_size, 
    shuffle=True, verbose=1)  
  print("Training complete \n") 

The batch size is set to 10, which is called online training. The batch size is a free parameter 
that must be determined by trial and error. Some of my colleagues like to use powers of two for 
their batch size: 4, 8, 16, etc., but there is no research evidence that I'm aware of that indicates 
this practice is better or worse. As a general rule of thumb, LSTM neural networks are very 
sensitive to the batch size.  

The max_epochs variable controls how many iterations will be used for training. The shuffle 

parameter in the fit() function indicates that the training items should be processed in random 

order. The default value is True, so the parameter could have been omitted. The verbose 

parameter controls how much information to display during training: 0 means display no 
information, 1 means display full information, and 2 means display a medium amount of 
information. 
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The fit() function returns a dictionary object that has the recorded training history. The demo 

program does not capture this information. 

After training, the demo program evaluates the model on the test data: 

  # 4. evaluate model 
  loss_acc = model.evaluate(test_x, test_y, verbose=0) 
  print("Test data: loss = %0.6f  accuracy = %0.2f%% " % \ 
    (loss_acc[0], loss_acc[1]*100)) 

The evaluate() function returns a list of values. The first value at index [0] is the always value 

of the required loss function specified in the compile() function, binary cross entropy in this 

case. Other values in the list are any optional metrics from the compile() function. In this 

example, 'acc' was passed, so the value at index [1] holds the classification accuracy. The 

program multiples by 100 to convert accuracy from a proportion (like 0.8123) to a percentage 
(like 81.23 percent). 

Saving and using the model 

In most situations you'll want to save a trained model, especially if the training took hours or 
even longer. The demo program saves the trained model like so: 

  # 5. save model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\imdb_model.h5" 
  model.save(mp) 

The Keras save() function saves a trained model using the hierarchical data format (HDF) 

version 5. It is a binary format, so saved models can't be inspected with a text editor. In addition 
to saving an entire model, you can save just the model weights and biases, which is sometimes 
useful. You can also save the just model architecture without the weights. 

You can load a saved Keras model from a different program like this: 

print("Loading saved IMDB sentiment model") 
mp = ".\\Models\\imdb_model.h5" 
model = K.models.load_model(mp) 

The whole point of creating and training a model is so that it can be used to make predictions for 
new, previously unseen data: 



 85 

  # 6. use model 
  print("Sentiment for \"the movie was a great waste of my time\"") 
  rev = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 
                   0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 
                   0, 4, 20, 16, 6, 86, 425, 7, 58, 64]], dtype=np.float32) 
  prediction = model.predict(rev) 
  print("Prediction (0 = negative, 1 = positive) = ", end="") 
  print("%0.4f" % prediction[0][0])   

Because the LSTM model was trained using reviews that have length padded to 50 encoded 
words, when making a prediction you must pass a new review to the predict() method using 

the same format. The encoded values for "the movie was a great waste of my time" were hard-
coded. However, in a non-demo scenario, when you create the training and test data files, you 
would save the encodings to a text file, typically named something like vocab.txt, along the 
lines of: 

the 4 

waste 425 

time 64 

. . .  

Then you could write a script that opens the vocabulary file and reads the file into a dictionary 
object, where a word is the dictionary key ,and the encoded index is the dictionary value. 

Summary and resources 

To create a classification prediction model where the input is a sequence of text such as 
sentences, you can use an LSTM network that consists of one or more LSTM cells plus some 
additional plumbing such as a dense layer. 

When working with text input, words should be encoded as numeric vectors, a process called 
embedding. You can either create embeddings in a preprocessing phase, or you can create an 
embedding on the fly using an Embedding() layer. 

Free parameters for LSTM models include weight-initialization algorithms, optimization 
algorithm and its parameters, dropout rate, batch size, and number of training iterations.  

You can find the training and test data used by the demo program here. 

The demo program uses just three of the 23 parameters for the LSTM() constructor. You can 

find additional information here. 
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Chapter 7 Autoencoders 

An autoencoder is a type of neural network that can perform dimensionality reduction for 
visualization. For example, suppose you have data that represents the age and height of men 
and women. If you want to graph your data, you can do so easily by plotting age on the x-axis 
and height on the y-axis, with blue dots for men and pink dots for women. But if your data has 
five dimensions, such as (age, height, weight, income, years-education), then there's no easy 
way to graph the data. 

 

Figure 7-1: Autoencoder Dimensionality Reduction for Visualization using Keras 

The screenshot in Figure 7-1 shows a demonstration of autoencoder dimensionality reduction 
for visualization. The demo program begins by loading 1,797 data items into memory. Each data 
item has 64 dimensions. The demo program creates an autoencoder that encodes/compresses 
each 64-dimensional data item down to two dimensions, and then graphs the result. Each of the 
data items belong to one of ten classes, and this information is used to color each point on the 
graph. 

The 1,797 data items represent crude 8x8 bitmaps of handwritten digits from 0 to 9. In other 
words, the autoencoder visualization is applied to data that is itself a representation of a 
visualization. However, autoencoder dimensionality reduction for visualization can be applied to 
any type of data. For example, the Fisher's Iris dataset has four dimensions (sepal length, sepal 
width, petal length, and petal width), and the data could be reduced to two dimensions for 
visualization using an autoencoder. 
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Understanding the data 

The demo data looks like this: 

0,0,0,1,11,0,0,0,0,0,0,7,8, . . . 16,4,0,0,4 
0,0,9,14,8,1,0,0,0,0,12,14, . . . 5,11,1,0,8 
. . .  

Each line of data represents a handwritten digit. The first 64 values on a line are grayscale pixel 
values between 0 and 16. The last value on a line is the digit value. 

The screenshot in Figure 7-2 shows one of the data items. The data item is first displayed in the 
shell, using the raw pixel values expressed in hexadecimal. Then the item is displayed 
graphically.  

 

Figure 7-2: One of the UCI Digits 

The goal of an autoencoder is to reduce the 64 dimensions of an item down to just two values 
so the item can be graphed as a point on an x-y graph. 

The Autoencoder program 

The complete program that generated the output shown in Figure 7-1 is shown in Code Listing 
7-1. The program begins with comments for the program file name and versions of Python, 
TensorFlow, and Keras used, and then imports the NumPy, Keras, TensorFlow, PyPlot and OS 
packages: 

# digits_autoenc.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
import numpy as np 
import keras as K 
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import tensorflow as tf 
import matplotlib.pyplot as plt 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' 

In a non-demo scenario, you'd want to include additional details in the comments. Because 
Keras and TensorFlow are under rapid development, you should always document which 
versions are being used. Version incompatibilities can be a significant problem when working 
with Keras and other open-source software. 

Code Listing 7-1: Autoencoder Program 

# digits_autoenc.py 
# Python 3.5.2, TensorFlow 2.1.5, Keras 1.7.0 
 
# 
===========================================================================
======= 
 
import numpy as np 
import keras as K 
import tensorflow as tf 
import matplotlib.pyplot as plt 
import os 
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'  # suppress CPU msg 
 
class MyLogger(K.callbacks.Callback): 
  def __init__(self, n): 
    self.n = n   # print loss every n epochs 
 
  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      curr_loss =logs.get('loss') 
      print("epoch = %4d loss = %0.6f" % (epoch, curr_loss)) 
 
def main(): 
  # 0. get started 
  print("\nBegin UCI digits dim reduction using an autoencoder") 
  np.random.seed(1) 
  tf.set_random_seed(1) 
 
  # 1. load data into memory 
  print("Loading 8x8 digits data into memory \n") 
  data_file = ".\\Data\\digits_uci_test_1797.txt" 
  data_x = np.loadtxt(data_file, delimiter=",", usecols=range(0,64), 
    dtype=np.float32) 
  labels = np.loadtxt(data_file, delimiter=",", usecols=[64], 
    dtype=np.float32) 
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  data_x = data_x / 16 
 
  # 2. define autoencoder 
  my_init = K.initializers.glorot_uniform(seed=1) 
  X = K.layers.Input(shape=[64]) 
  layer1 = K.layers.Dense(units=32, activation='sigmoid', 
    kernel_initializer=my_init)(X) 
  layer2 = K.layers.Dense(units=2, activation='sigmoid', 
    kernel_initializer=my_init)(layer1)  
  layer3 = K.layers.Dense(units=32, activation='sigmoid', 
    kernel_initializer=my_init)(layer2) 
  layer4 = K.layers.Dense(units=64, activation='sigmoid', 
    kernel_initializer=my_init)(layer3) 
 
  enc_dec = K.models.Model(X, layer4) 
  encoder = K.models.Model(X, layer2) 
 
  # 3. compile model 
  simple_adam = K.optimizers.Adam()   
  enc_dec.compile(loss='mean_squared_error', 
    optimizer=simple_adam) 
 
  # 4. train model 
  print("Starting training") 
  max_epochs = 500 
  my_logger = MyLogger(n=100) 
  h = enc_dec.fit(x=data_x, y=data_x, batch_size=8, epochs=max_epochs, 
    verbose=0, callbacks=[my_logger]) 
  print("Training complete \n")  
 
  # 5. generate (x,y) pairs for each digit  
  reduced = encoder.predict(data_x) 
 
  # 6. graph the digits in 2D 
  print("Displaying 64-dim data in 2D: \n") 
  plt.scatter(x=reduced[:, 0], y=reduced[:, 1], 
    c=labels, edgecolors='none', alpha=0.9, 
    cmap=plt.cm.get_cmap('nipy_spectral', 10), s=20) 
 
  plt.xlabel('component 1') 
  plt.ylabel('component 2') 
  plt.colorbar() 
  plt.show() 
 
# 
===========================================================================
======= 
 
if __name__ == "__main__": 
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  main() 

The program imports the entire Keras package and assigns an alias K. An alternative approach 

is to import only the modules you need, for example: 

from keras.models import Sequential 
from keras.layers import Dense, Activation 

Even though Keras uses TensorFlow as its backend engine, you don't need to explicitly import 
TensorFlow, except in order to set its random seed. The OS package is imported only so that an 
annoying TensorFlow startup warning message will be suppressed. 

The program structure consists of a single main function, plus a helper class for displaying 

messages during training. The helper class definition is: 

class MyLogger(K.callbacks.Callback): 
  def __init__(self, n): 
    self.n = n   # print loss every n epochs 

  def on_epoch_end(self, epoch, logs={}): 
    if epoch % self.n == 0: 
      curr_loss =logs.get('loss') 
      print("epoch = %4d loss = %0.6f" % (epoch, curr_loss)) 

The MyLogger class is used to print the value of the built-in loss function every 100 epochs. The 

idea is that the fit() method can display progress messages every epoch, or not at all, but if 

you want messages every few epochs, you must define a custom callback class. 

The main() code begins with: 

def main(): 
  # 0. get started 
  print("\nBegin UCI digits dim reduction using an autoencoder") 
  np.random.seed(1) 
  tf.set_random_seed(1) 
 
  # 1. load data into memory 
  print("Loading 8x8 digits data into memory \n") 
  data_file = ".\\Data\\digits_uci_test_1797.txt" 
  data_x = np.loadtxt(data_file, delimiter=",", usecols=range(0,64), 
    dtype=np.float32) 
  labels = np.loadtxt(data_file, delimiter=",", usecols=[64], 
    dtype=np.float32) 
  data_x = data_x / 16 
. . .  
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In most situations, you want to make your results reproducible. The Keras library makes 
extensive use of the NumPy global random-number generator, so it's good practice to set the 
seed value. The seed value used in the program, 1, is arbitrary. Similarly, because Keras uses 

TensorFlow, you'll often want to set its seed, too. Unfortunately, program results typically aren't 
completely reproducible due to order of numeric rounding of parallelized tasks. 

My preferred style is to indent with two spaces rather than the normal four spaces. All normal 
error-checking has been removed to keep the main ideas as clear as possible. 

The program assumes that the training and test data files are located in a subdirectory named 
Data. The program itself doesn't have any information about the structure of the data files. I 

strongly recommend that you include in your program comments such as: 

# data has 1797 items, is comma-delimited and looks like: 
# 0,0,12,10, . . 13,11,5 
# 0,0,0,2,8, . . 12,10,8 
# first 64 values are grayscale pixel values between 0 and 16 
# last value is the class label, '0' through '9' 

This kind of information is easy to remember when you’re writing your program, but can be very 
difficult to remember a couple of weeks later. 

The single data file is read into memory using the np.loadtxt() function. There are many 

ways to read data into memory, but the loadtxt() function is versatile enough to meet most 

problem scenarios. The NumPy genfromtxt() function is very similar but gives you a few 

additional options, such as dealing with missing data. The loadtxt() function has a large 

number of parameters, but in most cases, you only need usecols, delimiter, and dtype.   

Notice that usecols can accept a list such as [64] or a Python range such as range(0,64). If 

you use the range() function, be careful to remember that the first parameter is inclusive, but 

the second parameter is exclusive. 

The default dtype parameter value is numpy.float, which is an alias for Python float, and is 

the exact same as numpy.float64. But the default data type for almost all Keras functions is 

numpy.float32, so the program specifies this type. The idea is that for the majority of machine 

learning problems, the advantage in precision gained by using 64-bit values is not worth the 
memory and performance penalty. 

Instead of using a NumPy function such as loadtxt() to read data into memory, a different 

approach is to use the Pandas (originally "panel data," now "Python Data Analysis") library, 
which has many advanced data manipulation features. However, Pandas has a non-trivial 
learning curve and requires significant investment of your time. 

After the digits pixel x-data has been loaded into memory, the data is normalized by dividing all 
values by 16. This makes all pixel values between 0.0 and 1.0, which makes the autoencoder a 
bit easier to train.  
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Defining the autoencoder model 

The program defines a 64-32-2-32-64 autoencoder using this code: 

  # 2. define autoencoder 
  my_init = K.initializers.glorot_uniform(seed=1) 
  X = K.layers.Input(shape=[64]) 
  layer1 = K.layers.Dense(units=32, activation='sigmoid', 
    kernel_initializer=my_init)(X) 
  layer2 = K.layers.Dense(units=2, activation='sigmoid', 
    kernel_initializer=my_init)(layer1) 
  layer3 = K.layers.Dense(units=32, activation='sigmoid', 
    kernel_initializer=my_init)(layer2) 
  layer4 = K.layers.Dense(units=64, activation='sigmoid', 
    kernel_initializer=my_init)(layer3) 
 
  enc_dec = K.models.Model(X, layer4) 
  encoder = K.models.Model(X, layer2) 

The architecture of an autoencoder for dimensionality reduction is best explained by a 
diagram—see Figure 7-3. The diagram shows a small 6-3-2-3-6 autoencoder rather than the 
large 64-32-2-32-64 architecture of the demo program. 

There are two key ideas. First, an autoencoder's input and output are the same. Second, the 
inner-most layer has two nodes, which correspond to the x-axis and y-axis values for graphing. 

 

Figure 7-3: A 6-3-2-3-6 Autoencoder 

An autoencoder is a special neural network that learns to predict its own input. After training, the 
inner-most two nodes are a reduced dimensionality representation of the input. An autoencoder 
is a specific type of neural network called an encoder-decoder. The encoder part of the network 
extracts the compressed representation of the network's input. 
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The number of autoencoder input nodes and output nodes is determined by the dimensionality 
of your data. The inner-most layer will usually have two or three nodes if the goal is 
dimensionality reduction for visualization. The number of other hidden layers and the number of 
nodes in each layer are free parameters. 

Compiling and training the autoencoder 

After training data has been read into memory and the autoencoder has been defined, the 
model is compiled and trained: 

  # 3. compile model 
  simple_adam = K.optimizers.Adam() 
  enc_dec.compile(loss='mean_squared_error', optimizer=simple_adam) 
 
  # 4. train model 
  print("Starting training") 
  max_epochs = 500 
  my_logger = MyLogger(n=100) 
  h = enc_dec.fit(x=data_x, y=data_x, batch_size=8, epochs=max_epochs, 
    verbose=0, callbacks=[my_logger]) 
  print("Training complete \n") 

The Adam (adaptive moment estimation) optimizer is a good general-purpose learner for deep 

neural networks, but Adagrad, Adadelta, and RMSprop are reasonable alternatives. Because 

the target values are type np.float32, the autoencoder is compiled using mean-squared error 

rather than cross-entropy error. 

The number of training epochs and the batch size are free parameters. Notice that the fit() 

method is passed data_x for both the x and y parameters. The demo program captures the 

return object holding the training history from the fit() method, but doesn't make use of it. If 

you want to see the loss values, you can do so like this: 

print(h.history['loss'])   

The verbose=0 parameter suppresses all built-in logging messages so that only the ones 

generated by the my_logger callback object are displayed. 

Saving and using the autoencoder 

In most situations, you'll want to save a trained model, especially if the training took hours or 
even longer. The demo program does not save the trained autoencoder, but you can do so like 
this: 

  # save autoencoder model 
  print("Saving model to disk \n") 
  mp = ".\\Models\\autoenc_model.h5" 
  encoder.save(mp) 

www.dbooks.org

https://www.dbooks.org/


 94 

Keras saves trained models using the hierarchical data format (HDF) version 5. It is a binary 
format, so saved models can't be inspected with a text editor. In addition to saving an entire 
model, you can save only the model weights and biases, which is sometimes useful. You can 
also save the model architecture without the weights. 

A saved Keras autoencoder can be loaded from a different program like this: 

print("Loading a saved model") 
mp = ".\\Models\\autoenc_model.h5" 
encoder = K.models.load_model(mp) 

The demo program generates a two-dimensional visualization of the 1797 64-dimensional data 
items using these statements: 

  # 5. generate (x,y) pairs for each digit 
  reduced = encoder.predict(data_x) 
 
  # 6. graph the digits in 2D 
  print("Displaying 64-dim data in 2D: \n") 
  plt.scatter(x=reduced[:, 0], y=reduced[:, 1], 
    c=labels, edgecolors='none', alpha=0.9, 
    cmap=plt.cm.get_cmap('nipy_spectral', 10), s=20) 
 
  plt.xlabel('component 1') 
  plt.ylabel('component 2') 
  plt.colorbar() 
  plt.show() 

The call to the predict() method returns a NumPy array-of-arrays style matrix named reduced 

with 1797 rows and two columns, where column [0] is the x-axis value and column [1] is the y-
axis value. The PyPlot scatter() function is used to generate a scatter plot. 

The scatter() parameter names are a bit cryptic. Parameter c is a sequence of n numbers to 

be mapped to colors using the cmap parameter. Recall that array label holds the class labels 0 

through 9 (as type np.float32) for each data item. 

The cmap parameter ("colormap") has value 'nipy_spectral', which uses a continuous set of 

colors from dark purple, to green, to dark red. There are many other PyPlot colormaps, including 
'rainbow', 'jet', 'Dark1', and 'cool'.  

The s parameter controls the size (measured in points) of the marker dots on the scatter plot. 

The alpha parameter controls the transparency of the marker dots.  

Summary and resources 

An autoencoder is a special type of neural network that learns to predict its own input values. 
Because autoencoders don't use labeled data during training, autoencoders are an example of 
an unsupervised technique.  
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One common use of autoencoders is for dimensionality reduction, so that high-dimensionality 
data can be visualized on a two-dimensional or three-dimensional graph.  

You can find the 1797-item data file used by the demo program here. 

Other resources: 

• Complete UCI digits dataset 
• Reference for the PyPlot scatter function 
• Colormap examples 
• Reference for the Keras Model class API 
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Appendix 

The program presented in Code Listing A-1 was used in Chapter 4 to split the Cleveland Heart 
Disease dataset file into training, validation, and test files. 

Code Listing A-1: Program split_file.py 

# split_file.py 
# does not read source into memory 
# useful when no processing/normalization needed 
 
import numpy as np 
 
def file_len(fname): 
 f = open(fname) 
 for (i, line) in enumerate(f): pass 
 f.close() 
 return i+1 
 
def main(): 
  source_file = ".\\cleveland_norm.txt" 
  train_file = ".\\cleveland_train.txt" 
  validate_file = ".\\cleveland_validate.txt" 
  test_file = ".\\cleveland_test.txt" 
 
  N = file_len(source_file) 
  num_train = int(0.60 * N) 
  num_validate = int(0.20 * N) 
  num_test = N - (num_train + num_validate) # ~20% 
 
  np.random.seed(1) 
  indices = np.arange(N)  # array [0, 1, . . N-1] 
  np.random.shuffle(indices) 
 
  train_dict = {} 
  test_dict = {} 
  validate_dict = {} 
  for i in range(0,num_train): 
    k = indices[i]; v = i  # i is not used 
    train_dict[k] = v 
 
  for i in range(num_train,(num_train+num_validate)): 
    k = indices[i]; v = i 
    validate_dict[k] = v   
 
  for i in range((num_train+num_validate),N): 
    k = indices[i]; v = i 
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    test_dict[k] = v  
 
  f_source = open(source_file, "r") 
  f_train = open(train_file, "w") 
  f_validate = open(validate_file, "w") 
  f_test = open(test_file, "w") 
 
  line_num = 0 
  for line in f_source: 
    if line_num in train_dict: # checks for key 
      f_train.write(line) 
    elif line_num in validate_dict: 
      f_validate.write(line) 
    else: 
      f_test.write(line) 
    line_num += 1 
 
  f_source.close() 
  f_train.close() 
  f_validate.close() 
  f_test.close()  
 
if __name__ == "__main__": 
  main() 

 

The program presented in Code Listing A-2 was used in Chapter 5 to create the MNIST training 
and test files. 

Code Listing A-2: Program make_data.py 

# make_data.py 
# raw binary MNIST to Keras text file 
# 
# go to http://yann.lecun.com/exdb/mnist/ and 
# download the four g-zipped files: 
# train-images-idx3-ubyte.gz (60,000 train images)  
# train-labels-idx1-ubyte.gz (60,000 train labels)  
# t10k-images-idx3-ubyte.gz  (10,000 test images)  
# t10k-labels-idx1-ubyte.gz  (10,000 test labels)  
#  
# use the 7-Zip program to unzip the four files. 
# I recommend adding a .bin extension to remind 
# you they're in a proprietary binary format 
# 
# run the script twice, once for train data, once for 
# test data, changing the file names as appropriate. 
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# uses pure Python only 
 
# target format: 
# 5 ** 0 0 152 27 .. 0 
# 7 ** 0 0 38 122 .. 0 
# label digit at [0]    784 vals at [2-786] 
# dummy ** seperator at [1]  
 
def generate(img_bin_file, lbl_bin_file, 
            result_file, n_images): 
 
  img_bf = open(img_bin_file, "rb")    # binary image pixels 
  lbl_bf = open(lbl_bin_file, "rb")    # binary labels 
  res_tf = open(result_file, "w")      # result file 
 
  img_bf.read(16)   # discard image header info 
  lbl_bf.read(8)    # discard label header info 
 
  for i in range(n_images):   # number images requested  
    # digit label first 
    lbl = ord(lbl_bf.read(1))  # get label like '3' (one byte) 
    res_tf.write(str(lbl)) 
 
    # encoded = [0] * 10         # make one-hot vector 
    # encoded[lbl] = 1 
    # for i in range(10): 
    #  res_tf.write(str(encoded[i])) 
    #  res_tf.write(" ")  # like 0 0 0 1 0 0 0 0 0 0  
 
    res_tf.write(" ** ")  # arbitrary seperator char for readibility 
 
    # now do the image pixels 
    for j in range(784):  # get 784 vals for each image file 
      val = ord(img_bf.read(1)) 
      res_tf.write(str(val)) 
      if j != 783: res_tf.write(" ")  # avoid trailing space  
    res_tf.write("\n")  # next image 
 
  img_bf.close(); lbl_bf.close();  # close the binary files 
  res_tf.close()                   # close the result text file 
 
# ================================================================ 
 
def main(): 
  # generate(".\\UnzippedBinary\\train-images.idx3-ubyte.bin", 
  #         ".\\UnzippedBinary\\train-labels.idx1-ubyte.bin", 
  #         ".\\mnist_train_keras_1000.txt", 
  #         n_images = 1000)  # first n images 
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  generate(".\\UnzippedBinary\\t10k-images.idx3-ubyte.bin", 
          ".\\UnzippedBinary\\t10k-labels.idx1-ubyte.bin", 
          ".\\mnist_test_keras_foo.txt", 
          n_images = 100)  # first n images 
 
if __name__ == "__main__": 
  main() 

 
The program presented in Code Listing A-3 was used in Chapter 5 to display an MNIST digit. 

Code Listing A-3: Program show_image.py 

# show_image.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# data file looks like: 
# 5 ** 0 .. 23 157 .. 0 
# 4 ** 0 .. 255 16 .. 0 
# note dummy separator at [1] 
 
def display(txt_file, idx): 
  # values between 0-255 
  # data file has 1 + 1 + 784 = 786 vals per line, [0] to [785] 
 
  y_data = np.loadtxt(txt_file, delimiter = " ", 
    usecols=[0], dtype=np.float32) 
  x_data = np.loadtxt(txt_file, delimiter = " ", 
    usecols=range(2,786), dtype=np.float32) 
 
  label = int(y_data[idx])  # like '5' 
  print("digit = ", str(label), "\n") 
 
  pixels = np.array(x_data[idx,], dtype=np.int)  # to int 
  pixels = pixels.reshape((28,28)) 
  for i in range(28): 
    for j in range(28): 
      print("%.2X" % pixels[i,j], end="") 
      print(" ", end="") 
    print("") 
 
  img = np.array(x_data[idx,])   # as float32 
  img = img.reshape((28,28)) 
  plt.imshow(img, cmap=plt.get_cmap('gray_r')) 
  plt.show()   
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def main(): 
  print("\nBegin show MNIST image demo \n") 
 
  img_file = ".\\mnist_train_keras_1000.txt" 
  display(img_file, idx=0)  # first image 
 
  print("\nEnd \n") 
 
if __name__ == "__main__": 
  main() 

 
The program presented in Code Listing A-4 was used in Chapter 6 to create the IMDB Movie 
Review training and test files. 

Code Listing A-4: Program make_data_files.py 

# make_data_files.py 
# 
# input: source Stanford 50,000 data files reviews 
# output: one combined train file, one combined test file 
# output files are in index version, using the Keras dataset 
# format where 0 = padding, 1 = 'start', 2 = OOV, 3 = unused 
# 4 = most frequent word ('the'), 5 = next most frequent, etc. 
# i'm skipping the start=1 because it makes no sense. 
# these data files will be loaded into memory then feed 
# a built-in Embedding layer (rather than custom embeddings) 
 
import os 
 
# allow the Windws cmd shell to deal with wacky characters 
import sys 
import codecs 
sys.stdout = codecs.getwriter('utf8')(sys.stdout.buffer) 
 
# --------------------------------------------------------------- 
 
def get_reviews(dir_path, num_reviews, punc_str): 
  punc_table = {ord(char): None for char in punc_str}  # dictionary  
  reviews = []  # list-of-lists of words 
  ctr = 1 
  for file in os.listdir(dir_path): 
    if ctr > num_reviews: break 
    curr_file = os.path.join(dir_path, file) 
    f = open(curr_file, "r", encoding="utf8")   # each review has only 
one line . . .  
    for line in f: 
      line = line.strip() 
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      if len(line) > 0:  # number characters 
        # print(line)  # to show non-ASCII == errors 
        line = line.translate(punc_table)  # remove punc 
        line = line.lower()  # lower case 
        line = " ".join(line.split())  # remove consecutive WS 
        word_list = line.split(" ")  # one review is a list of words 
        reviews.append(word_list)    #  
    f.close()  # close curr file 
    ctr += 1 
  return reviews 
 
# --------------------------------------------------------------- 
 
def make_vocab(all_reviews): 
  word_freq_dict = {}   # key = word, value = frequency 
 
  for i in range(len(all_reviews)): 
    reviews = all_reviews[i] 
    for review in reviews: 
      for word in review: 
        if word in word_freq_dict: 
          word_freq_dict[word] += 1 
        else: 
          word_freq_dict[word] = 1 
 
  kv_list = []  # list of word-freq tuples so can sort 
  for (k,v) in word_freq_dict.items(): 
    kv_list.append((k,v)) 
 
  # list of tuples where index is 0-based rank, val is (word,freq) 
  sorted_kv_list = sorted(kv_list, key=lambda x: x[1], reverse=True)  # 
sort by freq 
 
  f = open(".\\vocab_file.txt", "w", encoding="utf8") 
  vocab_dict = {}  # key = word, value = 1-based rank ('the' = 1, 'a' = 
2, etc.) 
  for i in range(len(sorted_kv_list)): 
    w = sorted_kv_list[i][0]  # word is at [0] 
    vocab_dict[w] = i+1       # 1-based as in Keras dataset 
 
    f.write(w + " " + str(i+1) + "\n")  # save word-space-index 
  f.close() 
 
  return vocab_dict 
 
# --------------------------------------------------------------- 
 
def generate_file(reviews_lists, outpt_file, w_or_a, vocab_dict, 
max_review_len, label_char): 
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  fout = open(outpt_file, w_or_a, encoding="utf8")  # write first time, 
append later 
  offset = 3  # Keras offset: 'the' = 1 (most frequent) -> 1+3 = 4 
       
  for i in range(len(reviews_lists)):  # walk thru each review-list 
    curr_review = reviews_lists[i] 
    n_words = len(curr_review)      
    if n_words > max_review_len: 
      continue  # next i, continue without writing anything 
    n_pad = max_review_len - n_words   # number of 0s to prepend 
    for j in range(n_pad): 
      fout.write("0 ") 
    for word in curr_review:       
      if word not in vocab_dict:  # a word in test set not in training 
set 
        fout.write("2 ")   # 2 is the special out-of-vocab index         
      else: 
        idx = vocab_dict[word] + offset 
        fout.write("%d " % idx) 
    fout.write(label_char + "\n")  # like '0' or '1', or 'N' or 'P" 
         
  fout.close() 
 
# ---------------------------------------------------------------           
 
def main(): 
  remove_chars = "!\"#$%&()*+,-./:;<=>?@[\\]^_`{|}~"   # leave ' for 
words like it's 
 
  print("\nLoading all reviews into memory - be patient ") 
  pos_train_reviews = get_reviews(".\\SourceFiles\\train\\pos", 12500, 
remove_chars) 
  neg_train_reviews = get_reviews(".\\SourceFiles\\train\\neg", 12500, 
remove_chars) 
  pos_test_reviews = get_reviews(".\\SourceFiles\\test\\pos", 12500, 
remove_chars) 
  neg_test_reviews = get_reviews(".\\SourceFiles\\test\\neg", 12500, 
remove_chars) 
 
  mp = max(len(l) for l in pos_train_reviews)  # 2469 
  mn = max(len(l) for l in neg_train_reviews)  # 1520 
  mm = max(mp, mn)  # longest (in words) review in training set  # 2469 
  # print(mp, mn) 
 
  print("\nAnalyzing reviews and making vocabulary ") 
  vocab_dict = make_vocab([pos_train_reviews, neg_train_reviews])  # key 
= word, value = word rank 
  v_len = len(vocab_dict)  # need this value, plus 4, for Embedding 
Layer: 129888+4 = 129892 
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  print("\nVocab size = %d -- use this +4 for Embedding nw " % v_len) 
 
  max_review_len = 50   # use None for all reviews (any len) 
  if max_review_len == None or max_review_len > mm: 
    max_review_len = mm 
 
  print("\nGenerating training file with len %d words or less " % 
max_review_len) 
 
  generate_file(pos_train_reviews, ".\\imdb_train_50w.txt", "w", 
vocab_dict, max_review_len, "1") 
  generate_file(neg_train_reviews, ".\\imdb_train_50w.txt", "a", 
vocab_dict, max_review_len, "0") 
 
  print("\nGenerating test file with len %d words or less " % 
max_review_len) 
 
  generate_file(pos_test_reviews, ".\\imdb_test_50w.txt", "w", 
vocab_dict, max_review_len, "1") 
  generate_file(neg_test_reviews, ".\\imdb_test_50w.txt", "a", 
vocab_dict, max_review_len, "0") 
 
  # inspect a generated file 
  # vocab_dict was used indirectly (offset) 
 
  # print("Displaying encoded training file: \n") 
  # f = open(".\\imdb_train_50w.txt", "r", encoding="utf8") 
  # for line in f:  
  #   print(line, end="") 
  # f.close() 
 
  # print("\nDisplaying decoded training file: \n")  
 
  # index_to_word = {} 
  # index_to_word[0] = "<PAD>" 
  # index_to_word[1] = "<ST>" 
  # index_to_word[2] = "<OOV>" 
  # for (k,v) in vocab_dict.items(): 
  #   index_to_word[v+3] = k 
 
  # f = open(".\\imdb_train_50w.txt", "r", encoding="utf8") 
  # for line in f: 
  #   line = line.strip() 
  #   indexes = line.split(" ") 
  #   for i in range(len(indexes)-1):  # last is '0' or '1' 
  #     idx = (int)(indexes[i]) 
  #     w = index_to_word[idx] 
  #     print("%s " % w, end="") 
  #   print("%s \n" % indexes[len(indexes)-1]) 
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  # f.close() 
 
if __name__ == "__main__": 
  main() 

 
The program presented in Code Listing A-5 was used in Chapter 7 to display a UCI Digit 
Dataset image. 

Code Listing A-5: Program show_digit.py 

# show_digit.py 
 
import numpy as np 
import matplotlib.pyplot as plt 
 
# data file looks like: 
# 0,0,5,16 . . 12,0,0,7 
# first 64 values are grayscale pixel (0-16), last is digit (0-9) 
 
def display(data_file, idx): 
  x_data = np.loadtxt(data_file, delimiter = ",", 
    usecols=range(0,64), dtype=np.int) 
  y_data = np.loadtxt(data_file, delimiter = ",", 
    usecols=[64], dtype=np.int) 
 
  label = y_data[idx]  # like '5' 
  print("digit = ", str(label), "\n") 
 
  pixels = np.array(x_data[idx])  # target row of pixels 
  pixels = pixels.reshape((8,8)) 
  for i in range(8): 
    for j in range(8): 
      print("%.2X" % pixels[i,j], end="") 
      print(" ", end="") 
    print("") 
 
  plt.imshow(pixels, cmap=plt.get_cmap('gray_r')) 
  plt.show()   
 
def main(): 
  print("\nBegin show UCI mini-digit \n") 
 
  data_file = ".\\digits_uci_test_1797.txt" 
  display(data_file, idx=8)  
 
  print("\nEnd \n") 
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if __name__ == "__main__": 
  main() 
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